Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T19:48:14.877Z Has data issue: false hasContentIssue false

5 - Immunotherapy for gliomas

Published online by Cambridge University Press:  05 March 2016

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Duke Glioma Handbook
Pathology, Diagnosis, and Management
, pp. 91 - 120
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kantoff, PW, Higano, CS, Shore, ND, Berger, ER, Small, EJ, Penson, DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New England Journal of Medicine, 2010;363(5):411–22.CrossRefGoogle ScholarPubMed
Walboomers, JM, Jacobs, MV, Manos, MM, Bosch, FX, Kummer, JA, Shah, KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Journal of Pathology, 1999;189(1):1219.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Wiemann, B, Starnes, CO. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacology and Therapeutics, 1994;64(3):529–64.CrossRefGoogle ScholarPubMed
Coley, WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proceedings of the Royal Society of Medicine, 1910;3(Surg Sect):148.CrossRefGoogle ScholarPubMed
Burnet, FM. The concept of immunological surveillance. Progress in Experimental Tumor Research, 1970;13:127.CrossRefGoogle ScholarPubMed
Finke, LH, Wentworth, K, Blumenstein, B, Rudolph, NS, Levitsky, H, Hoos, A. Lessons from randomized phase III studies with active cancer immunotherapies – outcomes from the 2006 meeting of the Cancer Vaccine Consortium (CVC). Vaccine, 2007;25 Suppl 2:B97–B109.CrossRefGoogle ScholarPubMed
Dranoff, G, Jaffee, E, Lazenby, A, Golumbek, P, Levitsky, H, Brose, K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proceedings of the National Academy of Science of the United States of America, 1993;90(8):3539–43.Google ScholarPubMed
Hanayama, R, Tanaka, M, Miwa, K, Shinohara, A, Iwamatsu, A, Nagata, S. Identification of a factor that links apoptotic cells to phagocytes. Nature, 2002;417(6885):182–7.CrossRefGoogle ScholarPubMed
Jinushi, M, Nakazaki, Y, Dougan, M, Carrasco, DR, Mihm, M, Dranoff, G. MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. Journal of Clinical Investigation, 2007;117(7):1902–13.CrossRefGoogle ScholarPubMed
van der Bruggen, P, Traversari, C, Chomez, P, Lurquin, C, De Plaen, E, Van den Eynde, B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991;254(5038):1643–7.CrossRefGoogle ScholarPubMed
Cormier, JN, Salgaller, ML, Prevette, T, Barracchini, KC, Rivoltini, L, Restifo, NP, et al. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer Journal from Scientific American, 1997;3(1):3744.Google ScholarPubMed
Marchand, M, van Baren, N, Weynants, P, Brichard, V, Dreno, B, Tessier, MH, et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. International Journal of Cancer/Journal International du Cancer, 1999;80(2):219–30.Google ScholarPubMed
Schumacher, T, Bunse, L, Pusch, S, Sahm, F, Wiestler, B, Quandt, J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014;512:324–7.CrossRefGoogle ScholarPubMed
Izumoto, S, Tsuboi, A, Oka, Y, Suzuki, T, Hashiba, T, Kagawa, N, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. Journal of Neurosurgery, 2008;108(5):963–71.CrossRefGoogle ScholarPubMed
Yajima, N, Yamanaka, R, Mine, T, Tsuchiya, N, Homma, J, Sano, M, et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clinical Cancer Research, 2005;11(16):5900–11.CrossRefGoogle ScholarPubMed
Sampson, JH, Archer, GE, Mitchell, DA, Heimberger, AB, Herndon, JE, 2nd, Lally-Goss, D, et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Molecular Cancer Therapeutics, 2009;8(10):2773–9.CrossRefGoogle ScholarPubMed
Sampson, JH, Heimberger, AB, Archer, GE, Aldape, KD, Friedman, AH, Friedman, HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. Journal of Clinical Oncology, 2010;28(31):4722–9.CrossRefGoogle ScholarPubMed
Dunn, GP, Bruce, AT, Ikeda, H, Old, LJ, Schreiber, RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 2002;3(11):991–8.CrossRefGoogle ScholarPubMed
Fecci, PE, Sampson, JH. Clinical immunotherapy for brain tumors. Neuroimaging Clinics of North America, 2002;12(4):641–64.CrossRefGoogle ScholarPubMed
Gedeon, PC, Riccione, KA, Fecci, PE, Sampson, JH. Antibody-based immunotherapy for malignant glioma. Seminars in Oncology, 2014;41(4):496510.CrossRefGoogle ScholarPubMed
Bartels, U, Wolff, J, Gore, L, Dunkel, I, Gilheeney, S, Allen, J, et al. Phase 2 study of safety and efficacy of nimotuzumab in pediatric patients with progressive diffuse intrinsic pontine glioma. Neuro-Oncology, 2014;16(11):1554–9.CrossRefGoogle ScholarPubMed
Nitta, T, Sato, K, Yagita, H, Okumura, K, Ishii, S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet, 1990;335(8686):368–71.CrossRefGoogle ScholarPubMed
Choi, BD, Kuan, CT, Cai, M, Archer, GE, Mitchell, DA, Gedeon, PC, et al. Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proceedings of the National Academy of Science of the United States of America, 2013;110(1):270–5.Google ScholarPubMed
Fecci, PE, Heimberger, AB, Sampson, JH. Immunotherapy for primary brain tumors: no longer a matter of privilege. Clinical Cancer Research, 2014;20(22):5620–9.CrossRefGoogle ScholarPubMed
Fecci, PE, Mitchell, DA, Archer, GE, Morse, MA, Lyerly, HK, Bigner, DD, et al. The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. Journal of Neuro-Oncology, 2003;64(1–2):161–76.CrossRefGoogle ScholarPubMed
Holladay, FP, Heitz-Turner, T, Bayer, WL, Wood, GW. Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. Journal of Neuro-Oncology, 1996;27(2):179–89.CrossRefGoogle ScholarPubMed
Therasse, P, Arbuck, SG, Eisenhauer, EA, Wanders, J, Kaplan, RS, Rubinstein, L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. Journal of the National Cancer Institute, 2000;92(3):205–16.CrossRefGoogle ScholarPubMed
Hoos, A, Eggermont, AM, Janetzki, S, Hodi, FS, Ibrahim, R, Anderson, A, et al. Improved endpoints for cancer immunotherapy trials. Journal of the National Cancer Institute, 2010;102(18):1388–97.CrossRefGoogle ScholarPubMed
O’Regan, KN, Jagannathan, JP, Ramaiya, N, Hodi, FS. Radiologic aspects of immune-related tumor response criteria and patterns of immune-related adverse events in patients undergoing ipilimumab therapy. AJR American Journal of Roentgenology, 2011;197(2):W2416.CrossRefGoogle ScholarPubMed
Wolchok, JD, Hoos, A, O’Day, S, Weber, JS, Hamid, O, Lebbe, C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clinical Cancer Research, 2009;15(23):7412–20.CrossRefGoogle ScholarPubMed
Sampson, JH, Crotty, LE, Lee, S, Archer, GE, Ashley, DM, Wikstrand, CJ, et al. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proceedings of the National Academy of Science of the United States of America, 2000;97(13):7503–8.Google ScholarPubMed
Heimberger, AB, Crotty, LE, Archer, GE, Hess, KR, Wikstrand, CJ, Friedman, AH, et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clinical Cancer Reseach, 2003;9(11):4247–54.Google ScholarPubMed
Mehta, AI, Persson, O, Herndon, JE, Archer, GE, McLendon, R, Heimberger, AB, et al. Reply to M.S. Lesniak. Journal of Clinical Oncology, 2011;29(22):3105–6.CrossRefGoogle Scholar
Britten, CM, Janetzki, S, van der Burg, SH, Huber, C, Kalos, M, Levitsky, HI, et al. Minimal information about T cell assays: the process of reaching the community of T cell immunologists in cancer and beyond. Cancer Immunology, Immunotherapy: CII, 2011;60(1):1522.Google Scholar
Galon, J, Pages, F, Marincola, FM, Thurin, M, Trinchieri, G, Fox, BA, et al. The immune score as a new possible approach for the classification of cancer. Journal of Translational Medicine, 2012;10:1.CrossRefGoogle ScholarPubMed
Britten, CM, Janetzki, S, Ben-Porat, L, Clay, TM, Kalos, M, Maecker, H, et al. Harmonization guidelines for HLA-peptide multimer assays derived from results of a large scale international proficiency panel of the Cancer Vaccine Consortium. Cancer Immunology, Immunotherapy: CII, 2009;58(10):1701–13.CrossRefGoogle ScholarPubMed
Moodie, Z, Price, L, Janetzki, S, Britten, CM. Response determination criteria for ELISPOT: toward a standard that can be applied across laboratories. Methods in Molecular Biology, 2012;792:185–96.CrossRefGoogle Scholar
Welters, MJ, Gouttefangeas, C, Ramwadhdoebe, TH, Letsch, A, Ottensmeier, CH, Britten, CM, et al. Harmonization of the intracellular cytokine staining assay. Cancer Immunology, Immunotherapy: CII, 2012;61(7):967–78.CrossRefGoogle ScholarPubMed
Yuan, J, Gnjatic, S, Li, H, Powel, S, Gallardo, HF, Ritter, E, et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proceedings of the National Academy of Sciences of the United States of America, 2008;105(51):20410–5.Google ScholarPubMed
Wilde, S, Sommermeyer, D, Leisegang, M, Frankenberger, B, Mosetter, B, Uckert, W, et al. Human antitumor CD8+ T cells producing Th1 polycytokines show superior antigen sensitivity and tumor recognition. Journal of Immunology, 2012;189(2):598605.CrossRefGoogle ScholarPubMed
Abrams, JS. Immunoenzymetric assay of mouse and human cytokines using NIP-labeled anti-cytokine antibodies. In Coligan JE, Bierer BE (eds.) Current Protocols in Immunology. New York: John Wiley; 2001, Chapter 6, Unit 6 20.Google Scholar
Barrette, RW, Urbonas, J, Silbart, LK. Quantifying specific antibody concentrations by enzyme-linked immunosorbent assay using slope correction. Clinical and Vaccine Immunology, 2006;13(7):802–5.CrossRefGoogle ScholarPubMed
Chen, R, Lowe, L, Wilson, JD, Crowther, E, Tzeggai, K, Bishop, JE, et al. Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology. Clinical Chemistry, 1999;45(9):1693–4.CrossRefGoogle Scholar
Vergati, M, Schlom, J, Tsang, KY. The consequence of immune suppressive cells in the use of therapeutic cancer vaccines and their importance in immune monitoring. J Biomed Biotechnol, 2011;2011:182413.CrossRefGoogle ScholarPubMed
Olson, BM, McNeel, DG. Monitoring regulatory immune responses in tumor immunotherapy clinical trials. Frontiers in Oncology, 2013;3:109.CrossRefGoogle ScholarPubMed
Brunner, KT, Mauel, J, Cerottini, JC, Chapuis, B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology, 1968;14(2):181–96.Google ScholarPubMed
Betts, MR, Brenchley, JM, Price, DA, De Rosa, SC, Douek, DC, Roederer, M, et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. Journal of Immunological Methods, 2003;281(1–2):6578.CrossRefGoogle ScholarPubMed
Rubio, V, Stuge, TB, Singh, N, Betts, MR, Weber, JS, Roederer, M, et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nature Medicine, 2003;9(11):1377–82.CrossRefGoogle ScholarPubMed
Six, A, Mariotti-Ferrandiz, ME, Chaara, W, Magadan, S, Pham, HP, Lefranc, MP, et al. The past, present, and future of immune repertoire biology – the rise of next-generation repertoire analysis. Frontiers in Immunology, 2013;4:413.CrossRefGoogle ScholarPubMed
Medawar, PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology, 1948;29(1):5869.Google Scholar
Mattiace, LA, Davies, P, Dickson, DW. Detection of Hla-Dr on microglia in the human brain is a function of both clinical and technical factors. American Journal of Pathology, 1990;136(5):1101–14.Google ScholarPubMed
Hickey, WF, Osborn, JP, Kirby, WM. Expression of Ia molecules by astrocytes during acute experimental allergic encephalomyelitis in the Lewis rat. Cellular Immunology, 1985;91(2):528–35.CrossRefGoogle ScholarPubMed
Takamura, Y, Ikeda, H, Kanaseki, T, Toyota, M, Tokino, T, Imai, K, et al. Regulation of MHC class II expression in glioma cells by class II transactivator (CIITA). Glia, 2004;45(4):392405.CrossRefGoogle ScholarPubMed
Hickey, WF, Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science, 1988;239(4837):290–2.CrossRefGoogle ScholarPubMed
Cserr, HF, Knopf, PM. Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunology Today, 1992;13(12):507–12.CrossRefGoogle Scholar
Yamada, S, Depasquale, M, Patlak, CS, Cserr, HF. Albumin outflow into deep cervical lymph from different regions of rabbit brain. American Journal of Physiology, 1991;261(4):H1197204.Google ScholarPubMed
Bradbury, MW, Cserr, HF, Westrop, RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. American Journal of Physiology, 1981;240(4):F32936.Google ScholarPubMed
Cserr, HF, Harlingberg, CJ, Knopf, PM. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathology, 1992;2(4):269–76.CrossRefGoogle ScholarPubMed
Hickey, WF, Hsu, BL, Kimura, H. T-lymphocyte entry into the central nervous system. Journal of Neuroscience Research, 1991;28:254–60.CrossRefGoogle ScholarPubMed
Hickey, WF, Kimura, H. Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proceedings of the National Academy of Science of the United States of America, 1987;84:2082–6.Google Scholar
Wikstrand, CJ, Bigner, DD. Surface antigens of human glioma cells shared with normal adult and fetal brain. Cancer Research, 1979;39:3235.Google ScholarPubMed
Bigner, DD, Pitts, OM, Wikstrand, CJ. Induction of lethal experimental allergic encephalomyelitis in nonhuman primates and guinea pigs with human glioblastoma multiforme tissue. Journal of Neurosurgery, 1981;55(1):3242.CrossRefGoogle Scholar
Fecci, PE, Mitchell, DA, Whitesides, JF, Xie, W, Friedman, AH, Archer, GE, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Research, 2006;66(6):3294–302.CrossRefGoogle ScholarPubMed
Dunn, GP, Fecci, PE, Curry, WT. Cancer immunoediting in malignant glioma. Neurosurgery, 2012;71(2):201–22; discussion 22–3.CrossRefGoogle ScholarPubMed
Dunn, GP, Fecci, PE, Curry, WT. Cancer immunoediting in malignant glioma. Neurosurgery, 2012;71(2):201–23.CrossRefGoogle ScholarPubMed
Roszman, TL, Brooks, WH. Immunobiology of primary intracranial tumours. III. Demonstration of a qualitative lymphocyte abnormality in patients with primary brain tumours. Clin Exp Immunol, 1980;39(2): 395402.Google ScholarPubMed
Brooks, WH, Caldwell, HD, Mortara, RH. Immune responses in patients with gliomas. Surgical Neurology, 1974;2(6):419–23.Google ScholarPubMed
Young, HF, Sakalas, R, Kaplan, AM. Inhibition of cell-mediated immunity in patients with brain tumors. Surgical Neurology, 1976;5(1):1923.Google ScholarPubMed
Mahaley, MS, Jr., Brooks, WH, Roszman, TL, Bigner, DD, Dudka, L, Richardson, S. Immunobiology of primary intracranial tumors. Part 1: studies of the cellular and humoral general immune competence of brain-tumor patients. Journal of Neurosurgery, 1977;46(4):467–76.CrossRefGoogle ScholarPubMed
Brooks, WH, Roszman, TL, Mahaley, MS, Woosley, RE. Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clinical and Experimental Immunology, 1977;29(1):61–6.Google ScholarPubMed
Roszman, TL, Brooks, WH. Immunobiology of primary intracranial tumours. III. Demonstration of a qualitative lymphocyte abnormality in patients with primary brain tumours. Clinical and Experimental Immunology, 1980;39(2):395402.Google ScholarPubMed
Roszman, TL, Brooks, WH, Steele, C, Elliott, LH. Pokeweed mitogen-induced immunoglobulin secretion by peripheral blood lymphocytes from patients with primary intracranial tumors. Characterization of T helper and B cell function. Journal of Immunology, 1985;985:1545–50.Google Scholar
Elliott, LH, Brooks, WH, Roszman, TL. Activation of immunoregulatory lymphocytes obtained from patients with malignant gliomas. Journal of Neurosurgery, 1987;67(2):231–6.CrossRefGoogle ScholarPubMed
Ausiello, CM, Palma, C, Maleci, A, Spagnoli, GC, Amici, C, Antonelli, G, et al. Cell mediated cytotoxicity and cytokine production in peripheral blood mononuclear cells of glioma patients. European Journal of Cancer and Clinical Oncology, 1991;1991:646–50.Google Scholar
Elliott, LH, Brooks, WH, Roszman, TL. Cytokinetic basis for the impaired activation of lymphocytes from patients with primary intracranial tumors. Journal of Immunology, 1984;132(3):1208–15.CrossRefGoogle ScholarPubMed
Elliott, L, Brooks, W, Roszman, T. Role of interleukin-2 (IL-2) and IL-2 receptor expression in the proliferative defect observed in mitogen-stimulated lymphocytes from patients with gliomas. Journal of the National Cancer Institute, 1987;78(5):919–22.Google ScholarPubMed
Morford, LA, Elliott, LH, Carlson, SL, Brooks, WH, Roszman, TL. T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. Journal of Immunology, 1997;159(9):4415–25.CrossRefGoogle Scholar
Bodmer, S, Strommer, K, Frei, K, Siepl, C, de Tribolet, N, Heid, I, et al. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. Journal of Immunology, 1989;143(10):3222–9.CrossRefGoogle ScholarPubMed
de Martin, R, Haendler, B, Hofer-Warbinek, R, Gaugitsch, H, Wrann, M, Schlusener, H, et al. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family. EMBO Journal, 1987;6(12):3673–7.CrossRefGoogle ScholarPubMed
Fontana, A, Hengartner, H, de Tribolet, N, Weber, E. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. Journal of Immunology, 1984;132(4):1837–44.CrossRefGoogle ScholarPubMed
Wrann, M, Bodmer, S, de Martin, R, Siepl, C, Hofer-Warbinek, R, Frei, K, et al. T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO Journal, 1987;6(6):1633–6.CrossRefGoogle ScholarPubMed
Li, MO, Flavell, RA. TGF-beta: a master of all T cell trades. Cell, 2008;134(3):392404.CrossRefGoogle ScholarPubMed
Torre-Amione, G, Beauchamp, RD, Koeppen, H, Park, BH, Schreiber, H, Moses HL, et al. A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proceedings of the National Academy of Sciences of the United States of America, 1990;87(4):1486–90.Google ScholarPubMed
Dix, AR, Brooks, WH, Roszman, TL, Morford, LA. Immune defects observed in patients with primary malignant brain tumors. Journal of Neuroimmunology, 1999;100(1–2):216–32.CrossRefGoogle ScholarPubMed
Zou, JP, Morford, LA, Chougnet, C, Dix, AR, Brooks, AG, Torres, N, et al. Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. Journal of Immunology, 1999;162(8):4882–92.CrossRefGoogle ScholarPubMed
Roussel, E, Gingras, MC, Grimm, EA, Bruner, JM, Moser, RP. Predominance of a type 2 intratumoural immune response in fresh tumour-infiltrating lymphocytes from human gliomas. Clinical and Experimental Immunology, 1996;105(2):344–52.Google ScholarPubMed
Wintterle, S, Schreiner, B, Mitsdoerffer, M, Schneider, D, Chen, L, Meyermann, R, et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Reseach, 2003;63:7462–7.Google Scholar
Gershon, RK, Kondo, K. Infectious immunological tolerance. Immunology, 1971;21(6):903–14.Google ScholarPubMed
Braun, DP, Penn, RD, Flannery, AM, Harris, JE. Immunoregulatory cell function in peripheral blood leukocytes of patients with intracranial gliomas. Neurosurgery, 1982;10(2):203–9.Google ScholarPubMed
El Andaloussi, A, Lesniak, MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-Oncology, 2006;8(3):234–43.CrossRefGoogle ScholarPubMed
Mitchell, DA, Cui, X, Schmittling, RJ, Sanchez-Perez, L, Snyder, DJ, Congdon, KL, et al. Monoclonal antibody blockade of IL-2 receptor alpha during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood, 2011;118(11):3003–12.CrossRefGoogle ScholarPubMed
El Andaloussi, A, Han, Y, Lesniak, MS. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. Journal of Neurosurgery, 2006;105(3):430–7.CrossRefGoogle ScholarPubMed
Learn, CA, Fecci, PE, Schmittling, RJ, Xie, W, Karikari, I, Mitchell, DA, et al. Profiling of CD4+, CD8+, and CD4+CD25+CD45RO+FoxP3+ T cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T cells from healthy volunteers. Clinical Cancer Research, 2006;12(24):7306–15.CrossRefGoogle Scholar
Sanchez-Perez, LA, Choi, BD, Archer, GE, Cui, X, Flores, C, Johnson, LA, et al. Myeloablative temozolomide enhances CD8(+) T-cell responses to vaccine and is required for efficacy against brain tumors in mice. PLoS ONE, 2013;8(3):e59082.CrossRefGoogle ScholarPubMed
Dudley, ME, Wunderlich, JR, Robbins, PF, Yang, JC, Hwu, P, Schwartzentruber, DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science, 2002;298(5594):850–4.CrossRefGoogle ScholarPubMed
Dummer, W, Niethammer, AG, Baccala, R, Lawson, BR, Wagner, N, Reisfeld, RA, et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. Journal of Clinical Investigation, 2002;110(2):185–92.CrossRefGoogle ScholarPubMed
Asavaroengchai, W, Kotera, Y, Mule, JJ. Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proceedings of the National Academy of Science of the United States of America, 2002;99(2):931–6.Google ScholarPubMed
Sampson, JH, Aldape, KD, Archer, GE, Coan, A, Desjardins, A, Friedman, AH, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology, 2011;13(3):324–33.CrossRefGoogle ScholarPubMed
Pardoll, DM. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 2012;12(4):252–64.CrossRefGoogle ScholarPubMed
Peggs, KS, Quezada, SA, Chambers, CA, Korman, AJ, Allison, JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. Journal of Experimental Medicine, 2009;206(8):1717–25.CrossRefGoogle Scholar
Hodi, FS, O’Day, SJ, McDermott, DF, Weber, RW, Sosman, JA, Haanen, JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 2010;363(8):711–23.CrossRefGoogle ScholarPubMed
Agarwalla, P, Barnard, Z, Fecci, P, Dranoff, G, Curry, WT, Jr. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. Journal of Immunotherapy, 2012;35(5):385–9.CrossRefGoogle ScholarPubMed
Fecci, PE, Ochiai, H, Mitchell, DA, Grossi, PM, Sweeney, AE, Archer, GE, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clinical Cancer Research, 2007;13(7):2158–67.CrossRefGoogle Scholar
Margolin, K, Hamid, O, Lawrence, D, McDermott, D, Puzanov, I, Wolchok, JD, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncology, 2012;13(5): 459–65.CrossRefGoogle ScholarPubMed
Brentjens, R, Yeh, R, Bernal, Y, Riviere, I, Sadelain, M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Molecular Therapy, 2010;18(4):666–8.CrossRefGoogle Scholar
Sampson, JH, Choi, BD, Sanchez-Perez, L, Suryadevara, CM, Snyder, DJ, Flores, CT, et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clinical Cancer Research, 2014;20(4):972–84.CrossRefGoogle ScholarPubMed
Bargou, R, Leo, E, Zugmaier, G, Klinger, M, Goebeler, M, Knop, S, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science, 2008;321(5891):974–7.CrossRefGoogle Scholar
Cobbs, CS, Harkins, L, Samanta, M, Gillespie, GY, Bharara, S, King, PH, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Research, 2002;62(12):3347–50.Google ScholarPubMed
Mitchell, DA, Xie, W, Schmittling, R, Learn, C, Friedman, A, McLendon, RE, et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology, 2008;10(1):1018.CrossRefGoogle ScholarPubMed
Nair, SK, De Leon, G, Boczkowski, D, Schmittling, R, Xie, W, Staats, J, et al. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clinical Cancer Research, 2014;20(10):2684–94.CrossRefGoogle ScholarPubMed
Parsons, DW, Jones, S, Zhang, X, Lin, JC, Leary, RJ, Angenendt, P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008;321(5897):1807–12.CrossRefGoogle ScholarPubMed
Yan, H, Parsons, DW, Jin, G, McLendon, R, Rasheed, BA, Yuan, W, et al. IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine, 2009;360(8):765–73.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×