Skip to main content Accessibility help
×
  • Cited by 2
Publisher:
Cambridge University Press
Online publication date:
April 2023
Print publication year:
2023
Online ISBN:
9781009258661

Book description

Natural language occurs in time. Events happen earlier, later, or simultaneously with other events; however, this temporal dimension is often downplayed or overlooked. This Element introduces readers with a background in structural linguistics to dynamic approaches to phonological processing. It covers models of serial order, speech production and speech perception, with special attention to how they can enhance one another. The work then asks whether dynamic approaches have the potential to change how we think of phonological structure. Key ideas discussed include phonemes and auditory targets, control mechanisms creating structure, and the shape of phonological representations in a dynamic context. The work should function as a bridge for those with linguistic questions who want to learn answers derived from the study of speech as a dynamic system.

References

Arvaniti, A. (2009). Rhythm, timing and the timing of rhythm. Phonetica, 66(1–2), 4663.
Bauer, L., Warren, P., Bardsley, D., Kennedy, M., & Major, G. (2007). New Zealand English. Journal of the International Phonetic Association, 37(1), 97102. http://doi.org/10.1017/S0025100306002830.
Baxter, G. J., Blythe, R. A., Croft, W., & McKane, A. J. (2009). Modeling language change: An evaluation of Trudgill’s theory of the emergence of New Zealand English. Language Variation and Change, 21(2), 257–96. https://doi.org/10.1017/S095439450999010X.
Beckner, C., Blythe, R., Bybee, J., et al. (2009). Language is a complex adaptive system: Position paper. Language Learning, 59, 126. https://doi.org/10.1111/j.1467-9922.2009.00533.x.
Bod, R., Hay, J., & Jannedy, S. (2003). Probabilistic Linguistics. Cambridge, MA: MIT Press.
Boersma, P. (1998). Functional Phonology: Formalizing the Interaction between Articulatory and Perceptual Drives. The Hague: Holland Academic Graphics.
Bohland, J. W., Bullock, D., & Guenther, F. H. (2010). Neural representations and mechanisms for the performance of simple speech sequences. Journal of Cognitive Neuroscience, 22(7), 1504–29.
Boucher, V. J. (2021). The Study of Speech Processes: Addressing the Writing Bias in Language Science. Cambridge: Cambridge University Press.
Boucher, V. J., Gilbert, A. C., & Jemel, B. (2019). The role of low-frequency neural oscillations in speech processing: Revisiting delta entrainment. Journal of Cognitive Neuroscience, 31(8), 111. https://doi.org/10.1162/jocn_a_01410.
Bowers, J. S., Kazanina, N., & Andermane, N. (2016). Spoken word identification involves accessing position invariant phoneme representations. Journal of Memory and Language, 87, 7183. https://doi.org/10.1016/j.jml.2015.11.002.
Browman, C. P., & Goldstein, L. M. (1986). Towards an articulatory phonology. Phonology Yearbook, 3, 219–52.
Browman, C. P., & Goldstein, L. M. (1989). Articulatory gestures as phonological units. Phonology, 6(2), 201–51.
Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107(1), 127181. https://psycnet.apa.org/doi/10.1037/0033-295X.107.1.127
Burgess, N., & Hitch, G. J. (1992). Towards a network model of the articulatory loop. Journal of Memory and Language, 31, 429–60.
Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106, 551–81.
Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language, 55, 627–52. https://doi.org/10.1016/j.jml.2006.08.005.
Buzsaki, G. (2006). Rhythms of the Brain. New York: Oxford University Press.
Bybee, J. (2003). Phonology and Language Use (vol. 94). Cambridge: Cambridge University Press.
Byrd, D. (1996). A phase window framework for articulatory timing. Phonology, 13, 139–69.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. https://doi.org/10.1017/S0140525X12000477.
Clark, A. (2015). Surfing Uncertainty: Prediction, Action, and the Embodied Mind. Oxford: Oxford University Press.
Collins, J. (2019). Neural attractors and phonological grammar: What the sounds patterns of language can tell us about the brain (Doctoral thesis, The Arctic University of Norway).
Coltheart, M., & Rastle, K. (1994). Serial processing in reading aloud: Evidence for dual-route models of reading. Journal of Experimental Psychology: Human Perception and Performance, 20(6), 1197–211. https://doi.org/10.1037/0096-1523.20.6.1197.
Cutini, S., Szűcs, D., Mead, N., Huss, M., & Goswami, U. (2016). Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. Neuroimage, 143, 40–9. https://doi.org/10.1016/j.neuroimage.2016.08.012.
De Saussure, F. (2011[1916]). Course in General Linguistics. New York: Columbia University Press.
Dell, G. S. (1986). A spreading activation theory of retrieval in sentence production. Psychological Review, 93, 283321.
Di Lollo, V. (2012). The feature-binding problem is an ill-posed problem. Trends in Cognitive Sciences, 16(6), 317–21. https://doi.org/10.1016/j.tics.2012.04.007.
Donegan, P. J., & Stampe, D. (1979). The study of Natural Phonology. In Dinnsen, D., ed., Current Approaches to Phonological Theory. Bloomington: Indiana University Press, 126–73.
Drager, K. (2009). A sociophonetic ethnography of Selwyn Girls’ High (Doctoral thesis, University of Canterbury).
Elliott, J. G. (2020). It’s time to be scientific about dyslexia. Reading Research Quarterly, 55, S61S75. https://doi.org/10.1002/rrq.333.
Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Review, 109(3), 545–72. https://doi.org/10.1037/0033-295x.109.3.545.
Evans, V. (2009). How Words Mean: Lexical Concepts, Cognitive Models, and Meaning Construction. Oxford: Oxford University Press.
Foulkes, P., & Docherty, G. (2006). The social life of phonetics and phonology. Journal of Phonetics, 34(4), 409–38. https://doi.org/10.1016/j.wocn.2005.08.002.
Fowler, C. A., Shankweiler, D., & Studdert-Kennedy, M. (2016). Perception of the speech code revisited: Speech is alphabetic after all. Psychological Review, 123(2), 125–50. https://doi.org/10.1037/rev0000013.
Fraga González, G., Karipidis, I. I., & Tijms, J. (2018). Dyslexia as a neurodevelopmental disorder and what makes it different from a chess disorder. Brain Sciences, 8(10), 189.
Frisch, S. A. (2017). Exemplar theories in phonology. In Hannahs, S. J. & Bosch, A. R. K., eds., The Routledge Handbook of Phonological Theory. London: Routledge, 553–68.
Friston, K. (2009) The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293301.
Friston, K. J. (2010) The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–38.
Fusaroli, R., & Tylén, K. (2016). Investigating conversational dynamics: Interactive alignment, Interpersonal synergy, and collective task performance. Cognitive Science, 40(1), 145–71. https://doi.org/10.1111/cogs.12251.
Gafos, A., & Kirov, C. (2009). A dynamical model of change in phonological representations: The case of lenition. In Chitoran, J., Marsico, E., Pellegrino, F., & Coupé, C., eds., Approaches to Phonological Complexity. Berlin: Mouton de Gruyter, 219–40.
Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13(3), 361–77.
Ghitza, O. (2011). Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillators locked to the input rhythm. Frontiers in Psychology, 2, 113. https://doi: 10.3389/fpsyg.2011.00130.
Ghitza, O., & Greenberg, S. (2009). On the possible role of brain rhythms in speech perception: Intelligibility of time-compressed speech with periodic and aperiodic insertions of silence. Phonetica, 66, 113–26. https://doi.org/10.1159/000208934.
Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511–17. https://doi.org/10.1038/nn.3063.
Goldberg, A. E. (2006). Constructions at Work: The Nature of Generalization in Language. Oxford: Oxford University Press.
Goldberg, A., & Suttle, L. (2010). Construction grammar. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4), 468–77.
Goldstein, L., & Iskarous, K. (2018). The dynamics of prominence profiles: From local computation to global patterns. In Brentari, D. & Lee, J. L., eds., Shaping Phonology. Chicago: University of Chicago Press, 253–77.
Goldstein, L., Nam, H., Saltzman, E., & Chitoran, I. (2009). Coupled oscillator planning model of speech timing and syllable structure. In Fant, C., Gunnar, M., Fujisaki, H., & Shen, J., eds., Frontiers in Phonetics and Speech Science. Shanghai: The Commercial Press, 239–49.
Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 310. https://doi.org/10.1016/j.tics.2010.10.001.
Grabe, E., & Low, E. L. (2002) Durational variability in speech and the rhythm class hypothesis. In Gussenhoven, C. & Warner, N., eds., Laboratory Phonology 7. Berlin: Mouton deGruyter, 515–46.
Grossberg, S. (1978). A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In Rosen, R. & Snell, F., eds., Progress in Theoretical Biology. New York: Academic Press, 233374.
Guenther, F. H. (2016). Neural Control of Speech. Cambridge, MA: MIT Press
Guy, G. R. (2014). Linking usage and grammar: Generative phonology, exemplar theory, and variable rules. Lingua, 142, 5765. https://doi.org/10.1016/j.lingua.2012.07.007.
Haegens, S., & Golumbic, E. Z. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience & Biobehavioral Reviews, 86, 150–65. https://doi.org/10.1016/j.neubiorev.2017.12.002.
Hämäläinen, J. A., Rupp, A., Soltész, F., Szücs, D., & Goswami, U. (2012). Reduced phase locking to slow amplitude modulation in adults with dyslexia: An MEG study. Neuroimage, 59(3), 2952–61. https://doi.org/10.1016/j.neuroimage.2011.09.075.
Harper, S. (2021). Individual differences in phonetic variability and phonological representation (Doctoral thesis, University of Southern California).
Hartley, T., Hurlstone, M. J., & Hitch, G. J. (2016). Effects of rhythm on memory for spoken sequences: A model and tests of its stimulus-driven mechanism. Cognitive Psychology, 87, 135–78. http://dx.doi.org/10.1016/j.cogpsych.2016.05.001.
Hayes, B. (1995). Metrical Stress Theory: Principles and Case Studies. Chicago: University of Chicago Press.
Hitch, G. J., Hurlstone, M. J., & Hartley, T. (2022). Computational models of working memory for language. In Schwieter, J. W. & Zhisheng, W., eds., The Cambridge Handbook of Working Memory and Language. Cambridge: Cambridge University Press, 143–74.
Hoffmann, T., & Trousdale, G. (2013). The Oxford Handbook of Construction Grammar. Oxford: Oxford University Press.
Houghton, G., & Hartley, T. (1995). Parallel models of serial behavior: Lashley revisited. Psyche, 2(25), 125.
Hurlstone, M. J. (2021). Serial recall. In Kahana, M. J., & Wagner, A. D., eds., The Oxford Handbook of Human Memory. Oxford: Oxford University Press.
Hurring, G., Hay, J., Drager, K., Podlubny, R., Manhire, L., & Ellis, A. (2022). Social priming in speech perception: Revisiting kangaroo/kiwi priming in New Zealand English. Brain Sciences, 12(6), 684. https://doi.org/10.3390/brainsci12060684.
Iskarous, K. (2016). Compatible dynamical models of environment, sensory, and perceptual systems. Ecological Psychology, 28(4), 295311. http://dx.doi.org/10.1080/10407413.2016.1230377.
Izhikevich, E. M (2010). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge, MA: MIT Press.
Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–35.
Jones, M. R. (1986). Attentional rhythmicity in human perception. In Evans, J. R. & Clynes, M., eds., Rhythm in Psychological, Linguistic and Musical Processes. Springfield, IL: Charles C Thomas, Publisher, 1340.
Jun, S. A. (Ed.). (2005). Prosodic Typology: The Phonology of Intonation and Phrasing. Oxford: Oxford University Press.
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., Hudspeth, A. J., & Mack, S., eds. (2000). Principles of Neural Science. New York: McGraw-Hill.
Kazanina, N., Bowers, J. S., & Idsardi, W. (2018). Phonemes: Lexical access and beyond. Psychonomic Bulletin & Review, 25(2), 560–85. https://doi.org/10.3758/s13423-017-1362-0.
Kemmerer, D. (2014). Cognitive Neuroscience of Language. London: Psychology Press.
Kirchner, R. M. (1998). An Effort-Based Approach to Consonant Lenition (Doctoral thesis, University of California, Los Angeles).
Lakatos, P., Musacchia, G., O’Connell, M. N., et al. (2013) The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77, 750–61. https://doi.org/10.1016/j.neuron.2012.11.034.
Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–59. https://doi.org/10.1037/0033-295X.106.1.119.
Lashley, K. S. (1951). The Problem of Serial Order in Behavior. Oxford: Bobbs-Merrill.
Lehiste, I. (1977). Isochrony reconsidered. Journal of Phonetics, 5(3), 253–63.
Levelt, W. J. (1993). Speaking: From Intention to Articulation. Cambridge, MA: MIT press.
Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–77.
Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. The Psychology of Learning and Motivation, 49, 148. https://doi.org/10.1016/S0079-7421(08)00001-7.
Liang, P., Wu, S., & Gu, F. (2016). An Introduction to Neural Information Processing. Dordrecht: Springer.
Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 136.
Lisman, J. E., & Jensen, O. (2013) The theta-gamma neural code. Neuron, 77, 1002–16. https://doi.org/10.1016/j.neuron.2013.03.007.
Lizarazu, M., Lallier, M., Molinaro, N., Bourguignon, M., et al. (2015). Developmental evaluation of atypical auditory sampling in dyslexia: Functional and structural evidence. Human Brain Mapping, 36(12), 49865002. https://doi.org/10.1002/hbm.22986.
Logan, G. D. (2018). Automatic control: How experts act without thinking. Psychological Review, 125(4), 453-85.
Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 1001–10. https://doi.org/10.1016/j.neuron.2007.06.004.
Marr, D. (1982). Vision: A Computational Approach. San Francisco: Freeman & Co.
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18(1), 186.
Mesgarani, N., & Chang, E.F. (2012) Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485, 233–6. https://doi.org/10.1038/nature11020.
Meyer, L. (2018) The neural oscillations of speech processing and language comprehension: State of the art and emerging mechanisms. European Journal of Neuroscience, 28, 26092621. https://doi.org/10.1111/ejn.13748.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197. https://doi.org/10.1037/h0043158.
Mills, G. J. (2014). Dialogue in joint activity: Complementarity, convergence and conventionalization. New Ideas in Psychology, 32, 158–73. https://doi.org/10.1016/j.newideapsych.2013.03.006.
Monahan, P. J., Schertz, J., Fu, Z., & Pérez, A. (2022). Unified coding of spectral and temporal phonetic cues: Electrophysiological evidence for abstract phonological features. Journal of Cognitive Neuroscience, 34(4), 618–38. https://doi.org/10.1162/jocn_a_01817.
Munson, B., McDonald, E. C., DeBoe, N. L., & White, A. R. (2006). The acoustic and perceptual bases of judgments of women and men’s sexual orientation from read speech. Journal of Phonetics, 34(2), 202–40.
Nagy, N. (2013). Phonology and sociolinguistics. In Bayley, R., Cameron, R., and Lucas, C., eds., The Oxford Handbook of Sociolinguistics. Oxford: Oxford University Press, pp. 425-444.
Nathan, G. S. (2008). Phonology: A Cognitive Grammar Introduction. Amsterdam: John Benjamins
Oganian, Y., & Chang, E. F. (2019). A speech envelope landmark for syllable encoding in human superior temporal gyrus. Science Advances, 5(11), 113. https://doi.org/10.1126/sciadv.aay6279.
Oganian, Y., Fox, N. P., & Chang, E. F. (2022). Cortical representation of speech sounds: Insights from intracranial electrophysiology of speech sound processing. In Holt, L.L., Peelle, J. E., Coffin, A. B., Popper, A. N., & Fay, R. R., eds., Speech Perception. New York: The ASA Press, 4580.
Ojemann, G. A. (1987). Surgical therapy for medically intractable epilepsy. Journal of Neurosurgery, 66(4), 489–99. https://doi.org/10.3171/jns.1987.66.4.0489.
Ostrand, R., & Chodroff, E. (2021). It’s alignment all the way down, but not all the way up: Speakers align on some features but not others within a dialogue. Journal of Phonetics, 88, article 101074. https://doi.org/10.1016/j.wocn.2021.101074.
O’Sullivan, J. A., Herrero, J., Smith, E. et al. (2019). Hierarchical encoding of attended auditory objects in multi-talker speech perception. Neuron, 104(6), 1195–209. https://doi.org/10.1016/j.neuron.2019.09.007.
Pasley, B. N., David, S. V., Mesgarani, N., et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), article e1001251. https://doi.org/10.1371/journal.pbio.1001251.
Peelle, J. E. & Davis, M. H. (2012) Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, article 320. https://doi.org/10.3389/fpsyg.2012.00320.
Piai, V., & Zheng, X. (2019). Chapter Eight – Speaking waves: Neuronal oscillations in language production. Psychology of Learning and Motivation, 71, 265302. https://doi.org/10.1016/bs.plm.2019.07.002.
Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Science, 18(9), 451–56. http://dx.doi.org/10.1016/j.tics.2014.05.006.
Pickering, M. J., & Garrod, S. (2004). Toward a mechanistic psychology of dialogue. Behavioral and Brain Sciences, 27(2), 169–90. https://doi.org/10.1017/S0140525X04000056.
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(4), 329–47. https://doi.org/10.1017/S0140525X12001495.
Pickering, M. J., & Garrod, S. (2014). Self-, other-, and joint monitoring using forward models. Frontiers in Human Neuroscience, 8, article 132. https://doi.org/10.3389/fnhum.2014.00132.
Pierrehumbert, J. (2001). Exemplar dynamics: Word frequency, lenition, and contrast. In Bybee, J. and Hopper, P., eds., Frequency Effects and the Emergence of Linguistic Structure. Amsterdam: John Benjamins, Amsterdam, 137–57.
Pierrehumbert, J. B. (2003) Phonetic diversity, statistical learning, and acquisition of phonology. Language and Speech, 46, 115–54.
Protopas, A. (2014). From temporal processing to developmental language disorders: mind the gap. Philosophical Transactions of the Royal Society B, 369, 111. https://doi.org/10.1098/rstb.2013.0090.
Protopapas, A., & Parrila, R. (2018). Is dyslexia a brain disorder? Brain Sciences, 8(4), 61. http://doi.org/10.3390/brainsci8040061.
Ramus, F., Nespor, M., & Mehler, J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition, 73, 265–92.
Roelofs, A. (1997). The WEAVER model of word-form encoding in speech production. Cognition, 64, 249–84.
Roon, K. D., & Gafos, A. I. (2016). Perceiving while producing: Modeling the dynamics of phonological planning. Journal of Memory and Language, 89, 222–43. https://doi.org/10.1016/j.jml.2016.01.005.
Saltzman, E., & Byrd, D. 2000. Task-dynamics of gestural timing: Phase windows and multifrequency rhythms. Human Movement Science, 19, 499526.
Saltzman, E. L., & Munhall, K. G. 1989. A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1, 333–82
Saltzman, E., Nam, H., Krivokapic, J., & Goldstein, L. (2008). A task-dynamic toolkit for modeling the effects of prosodic structure on articulation. In Barbosa, P. A., Madureira, S., & Reis, C., eds., Proceedings of the Speech Prosody 2008 Conference. Campinas: Editora RG/CNPq.
Samuel, A. G. (2020). Psycholinguists should resist the allure of linguistic units as perceptual units. Journal of Memory and Language, 111, 112. https://doi.org/10.1016/j.jml.2019.104070.
Sasisekaran, J. (2012). Effects of delayed auditory feedback on speech kinematics in fluent speakers. Perceptual and Motor Skills, 115(3), 845–64. https://doi.org/10.2466/15.22.PMS.115.6.845-864.
Schöner, G., & Spencer, J. (2015). Dynamic Thinking: A Primer on Dynamic Field Theory. Oxford: Oxford University Press.
Sedivy, J. (2019). Language in Mind: An Introduction to Psycholinguistics (2nd ed.). Oxford: Oxford University Press.
Segalowitz, S. J., & Chevalier, H. (1998). Event-related potential (ERP) research in neurolinguistics, part I, techniques and applications to lexical access. In Stemmer, B. E. & Whitaker, H. A., eds., Handbook of Neurolinguistics. San Diego: Academic Press, 95109.
Shattuck-Hufnagel, S. (1979). Speech errors as evidence for a serial-ordering mechanism in sentence production. In Cooper, W. E. & Walker, E. C. T., eds., Sentence Processing: Psycholinguistic Studies Presented to Merrill Garrett. Hillsdale, NJ: Erlbaum, 295342.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379423.
Spivey, M. (2008). The Continuity of Mind. Oxford: Oxford University Press.
Spivey, M., Joanisse, M., & McRae, K. (Eds.). (2012). The Cambridge Handbook of Psycholinguistics. Cambridge: Cambridge University Press.
Stevens, K. N. (2002). Toward a model for lexical access based on acoustic landmarks and distinctive features. The Journal of the Acoustical Society of America, 111(4), 1872–91.
Stevens, K. N., & Halle, M. (1967) Remarks on the analysis by synthesis and distinctive features. In Walthen-Dunn, W., ed., Models for the Perception of Speech and Visual Form. Cambridge, MA: MIT Press, 88102.
St. Pierre, T., Cooper, A., & Johnson, E. K. (2021). Cross-generational phonetic alignment between mothers and their children. Language Learning and Development, 18(4), 393414. https://doi.org/10.1080/15475441.2021.1979401.
Tilsen, S. (2013). A dynamical model of hierarchical selection and coordination in speech planning. PLoS One, 8(4), article e62800. https://doi.org/10.1371/journal.pone.0062800.
Tilsen, S. (2014). Selection-coordination theory. Cornell Working Papers in Phonetics and Phonology.
Tilsen, S. (2016). Selection and coordination: The articulatory basis for the emergence of phonological structure. Journal of Phonetics, 55, 5377. https://doi.org/10.1016/j.wocn.2015.11.005.
Tilsen, S. (2018). Three mechanisms for modeling articulation: Selection, coordination, and intention. Cornell Working Papers in Phonetics and Phonology.
Tilsen, S. (2019a). Motoric mechanisms for the emergence of non-local phonological patterns. Frontiers in Psychology, 10, 2143. https://doi.org/10.3389/fpsyg.2019.02143.
Tilsen, S. (2019b). Space and time in models of speech rhythm. Annals of the New York Academy of Sciences, 1453(1), 4766. https://doi.org/10.1111/nyas.14102.
Tilsen, S. (2019c). Syntax with Oscillators and Energy Levels. Berlin: Language Science Press.
Tilsen, S. (2020). Detecting anticipatory information in speech with signal chopping. Journal of Phonetics, 82, 126. https://doi.org/10.1016/j.wocn.2020.100996.
Tune, S., & Obleser, J. (2022). A parsimonious look at neural oscillations in speech perception. In Holt, L. L., Peelle, J. E., Coffin, A. B., Popper, A. N., & Fay, R. R., eds., Speech Perception. New York: The ASA Press, 81112.
Turk, A., & Shattuck-Hufnagel, S. (2013). What is speech rhythm? A commentary inspired by Arvaniti & Rodriquez, Krivokapić, and Goswami & Leong. Laboratory Phonology, 4(1), 93118.
Turk, A., & Shattuck-Hufnagel, S. (2020). Speech Timing: Implications for Theories of Phonology, Phonetics, and Speech Motor Control. Oxford: Oxford University Press.
van Geert, P. (1991). A dynamic systems model of cognitive and language growth. Psychological Review, 98(1), 353. https://doi.org/10.1037/0033-295X.98.1.3.
van Geert, P. (2003). Dynamic systems approaches and modeling of developmental processes. In Schinka, J. A., Velicer, W. F., Healy, A. F., et al., eds., Handbook of Developmental Psychology. New York: Sage Publications,640–72.
Vousden, J. I., Brown, G. D., & Harley, T. A. (2000). Serial control of phonology in speech production: A hierarchical model. Cognitive Psychology, 41(2), 101–75.
White, L., & Mattys, S. L. (2007). Calibrating rhythm: First language and second language studies. Journal of Phonetics, 35, 501–22. https://doi.org/10.1016/j.wocn.2007.02.003.
Wijnants, M. L., Hasselman, F., Cox, R. F. A., Bosman, A. M. T., & Van Orden, G. (2012). An interaction-dominant perspective on reading fluency and dyslexia. Annals of Dyslexia, 62(2), 100–19. https://doi.org/10.1007/s11881-012-0067-3.
Wolpert, D.M. (1997). Computational approaches to motor control. Trends in Cognitive Science, 1, 209–16. https://doi.org/10.1016/s1364-6613(97)01070-x.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.