Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T07:52:22.308Z Has data issue: false hasContentIssue false

5 - Energy concepts in dynamic fracture

Published online by Cambridge University Press:  03 October 2009

L. B. Freund
Affiliation:
Brown University, Rhode Island
Get access

Summary

Introduction

Analytical methods based on the work done by applied loads and the changes in the energy of a system that accompany a real or virtual crack advance have been of central importance in the development of fracture mechanics. These methods have provided a degree of unification of seemingly diverse ideas in fracture mechanics, and they have led to procedures of enormous practical significance for the characterization of the fracture behavior of materials. In addition, some of the most elegant theoretical analyses in the field have been those associated with energy methods. In this chapter, energy concepts that are particularly relevant to the study of dynamic fracture processes are considered.

The importance of the variation of energy measures during crack growth was recognized by Griffith (1920) in his pioneering discussion of brittle fracture, as outlined in Section 1.1.2. The extension of a crack requires the formation of new surface, he reasoned, with its associated surface energy. Consequently, a crack in a brittle solid should advance when the reduction of the total potential energy of the body during a small amount of crack advance equals the surface energy of the new surface thereby created. For an elastic body containing a crack, the negative of the rate of change of total potential energy with respect to crack dimension is called the energy release rate. This quantity, which is usually denoted by the symbol G, is a function of crack size, in general.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×