Published online by Cambridge University Press: 14 August 2009
Classical theories must emerge from quantum mechanics and there is no reason to expect a simple recipe which would yield the physically correct quantum theory from the classical input. On the other hand, at least in the nonrelativistic domain, the rules of canonical quantization have served well and it is natural to apply them to the Abraham model. There is one immediate difficulty. Canonical quantization starts from identifying the canonical variables of the classical theory. Thus we first have to rewrite the equations of motion for the Abraham model in Hamiltonian form. For this purpose we adopt the Coulomb gauge, as usual, so as to eliminate the constraints. In the quantized version we thereby obtain the Pauli–Fierz Hamiltonian which has an obvious extension to include spin.
We have to ensure that the Pauli–Fierz Hamiltonian generates a unitary time evolution on the appropriate Hilbert space of physical states. Mathematically this means that we have to specify conditions under which the Pauli–Fierz Hamiltonian is a self-adjoint operator, an issue which can be satisfactorily resolved. Still, the true physical situation is more subtle and in fact not so well understood. It is related to the abundance of very low-energy photons, i.e the infrared problem, and to the arbitrariness of the cutoff at high energies, i.e. the ultraviolet problem. There are many items of interest before these, and it will take us a while to start discussing these subtleties.
Some words on our notation: In the beginning we keep c, ħ, and later set them equal to one, mostly without notice.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.