Published online by Cambridge University Press: 05 June 2014
This chapter provides explanations of some of the fundamental issues addressed in this book. It also provides detailed derivations of some of the important equations presented in previous chapters. The first two sections of this chapter show the detailed derivation of the quadratic velocity centrifugal and Coriolis force vector of Eq. 149 of Chapter 5. The final expression of Eq. 149 of Chapter 5 is obtained using two different approaches; the kinetic energy and the virtual work. It is also shown in Section 3 of this chapter how a general expression of these forces that is applicable to any set of orientation parameters can be obtained. This is the expression used in the generalized Newton–Euler equations presented in Chapter 5 of the book. The generalized centrifugal and Coriolis inertia forces associated with any set of orientation parameters including Euler angles can be obtained from the forces that appear in the Newton–Euler equations using a simple velocity transformation.
Understanding the finite element floating frame of reference formulation presented in Chapter 6 of this book requires a good understanding of the concept of the parallel axis theorem used in rigid body dynamics. The use of the parallel axis theorem is required in rigid body dynamics when the bodies have complex geometric shapes that are characterized by slope discontinuities.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.