Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T00:55:22.134Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2016

Edouard B. Sonin
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Shaeer, . R., Raman, C., Vogels, J. M., and Ketterle, W. 2001. Observation of vortex lattices in Bose–Einstein condensates. Science, 292, 476–479.CrossRefGoogle ScholarPubMed
Abramowitz, M., and Stegun, I. A. 1972. Handbook of Mathematical Functions. Dover.Google Scholar
Abrikosov, A. A. 1957. On the magnetic properties of superconductors of the second group. Zh. Eksp. Teor. Fiz., 32, 1442–1452 [Sov. Phys.–JETP, 5, 1174–1182 (1957)].Google Scholar
Adachi, H., Fujiyama, S., and Tsubota, M. 2010. Steady-state counterflow quantum turbulence: simulation of vortex filaments using the full Biot-Savart law. Phys. Rev. B, 81, 104511.CrossRefGoogle Scholar
Adams, P.W., and Glaberson, W. I. 1987. Vortex dynamics in superfluid helium films. Phys. Rev. B, 35, 4633–4652.CrossRefGoogle ScholarPubMed
Adams, P. W., Cieplak, M., and Glaberson, W. I. 1985. Spin-up problem in superfluid 4He. Phys. Rev. B, 32, 171–177.CrossRefGoogle ScholarPubMed
Aftalion, A., Blanc, X., and Dalibard, J. 2005. Vortex patterns in a fast rotating Bose- Einstein condensate. Phys. Rev. A, 71, 023611.CrossRefGoogle Scholar
Aharonov, Y., and Bohm, D. 1959. Significance of electromagnetic potentials in the quantum theory. Phys. Rev., 115, 485–491.CrossRefGoogle Scholar
Alekseenko, S. V., Kuibin, P. A., and Okulov, V. L. 2007. Theory of Concentrated Vortices. Springer.Google Scholar
Alpar, M. A. 1978. Relaxation of rotating He II following a spin-up of its container: a superfluid Ekman time? J. Low Temp. Phys., 31, 803–815.Google Scholar
Ambegaokar, V., and Teitel, S. 1979. Dynamics of vortex pairs in superfluid films. Phys. Rev B, 19, 1667–1670.CrossRefGoogle Scholar
Ambegaokar, V., Halperin, B. I., Nelson, D. R., and Siggia, E. D. 1978. Dissipation in two-dimensional superfluids. Phys. Rev. Lett., 40, 783–786.CrossRefGoogle Scholar
Ambegaokar, V., Halperin, B. I., Nelson, D. R., and Siggia, E. D. 1980. Dynamics of superfluid films. Phys. Rev. B, 21, 1806–1826.CrossRefGoogle Scholar
Andereck, C. D., and Glaberson, W. I. 1982. Tkachenko waves. J. Low Temp. Phys., 48, 257–296.CrossRefGoogle Scholar
Andereck, C. D., Chalupa, L., and Glaberson, W. I. 1980. Tkachenko waves in rotating superfluid helium. Phys. Rev. Lett., 44, 33–36.CrossRefGoogle Scholar
Anderson, B., Haljan, P., Wieman, C., and Cornell, E. 2000. Vortex precession in Bose– Einstein condensates: observations with filled and empty cores. Phys. Rev. Lett., 85, 2857–2860.CrossRefGoogle ScholarPubMed
Anderson, P. W. 1966. Considerations on the flow of superfluid helium. Rev. Mod. Phys., 38, 298–310.CrossRefGoogle Scholar
Anderson, P. W., and Morel, P. 1961. Generalized Bardeen–Coope–Schrieffer states and the proposed low-temperature phase of iquid He3. Phys. Rev., 123, 1911–1934.CrossRefGoogle Scholar
Anderson, P. W., and Toulouse, G. 1977. Phase slippage without vortex cores: vortex textures in superfluid 3He. Phys. Rev. Lett., 38, 508–511.CrossRefGoogle Scholar
Andreev, A. F. 1964. The thermal conductivity of the intermediate state in superconductors. Zh. Eksp. Teor. Fiz., 46, 1823–1828 [Sov. Phys.–JETP, 19, 1228–1231 (1964)].Google Scholar
Andreev, A. F., and Kagan, M. Yu. 1984. Hydrodynamics of a rotating superfluid liquid. Zh. Eksp. Teor. Fiz., 86, 546–557 [Sov. Phys.–JETP, 59, 318–324 (1984)].Google Scholar
Andronikashvili, E. L. 1946. A direct observation of two kinds of motion in helium II. J. Phys. (USSR), 10, 201–206.Google Scholar
Andronikashvili, E. L., and Mamaladze, Yu. G. 1966. Quantization of macroscopic motions and hydrodynamics of rotating helium II. Rev. Mod. Phys., 38, 567–625.CrossRefGoogle Scholar
Andronikashvili, E. L., and Mamaladze, Yu. G. 1967. Rotation of helium II. Pages 79–160 of: Gorter, C. J. (ed.), Progress in Low Temperature Physics, vol. 5. North-Holland.Google Scholar
Andronikashvili, E. L., Mamaladze, Yu. G., Matinyan, S. G., and Tsakadze, J. S. 1961. Properties of the quantized vortices generated by the rotation of helium II. Usp. Fiz. Nauk, 73, 1–22 [Sov. Phys.–Usp., 4, 3–40 (1961)].Google Scholar
Anglin, J. R., and Crescimanno, M. 2002. Inhomogeneous vortex matter. arXiv: condmat/ 0210063.
Ao, P., and Thouless, D. J. 1993. Berry's phase and the Magnus force for a vortex line in a superconductor. Phys. Rev. Lett., 70, 2158–2161.CrossRefGoogle Scholar
Araki, T., Tsubota, M., and Nemirovskii, S. K. 2002. Energy spectrum of superfluid turbulence with no normal-fluid component. Phys. Rev. Lett., 89, 145301.CrossRefGoogle ScholarPubMed
Arkhipov, R.G. 1957. Flow instability of a superfluid film. Zh. Eksp. Teor. Fiz., 33, 116–123 [Sov. Phys.–JETP, 6, 90–96 (1958)].Google Scholar
Arms, R. J., and Hama, F. R. 1965. Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids, 8, 553–559.CrossRefGoogle Scholar
Aronov, A. G., Gal'perin, Yu. M., Gurevich, V. L., and Kozub, V. I. 1981. The Boltzmannequation description of transport in superconductors. Adv. Phys., 30, 539–592.CrossRefGoogle Scholar
Ashton, R. A., and Glaberson, W. I. 1979. Vortex waves in superfluid 4He. Phys. Rev. Lett., 42, 1062–1064.CrossRefGoogle Scholar
Auerbach, A., Arovas, D. P., and Ghosh, S. 2006. Quantum tunneling of vortices in twodimensional condensates. Phys. Rev. B, 74, 064511.CrossRefGoogle Scholar
Babuin, S., Varga, E., Vinen, W. F., and Skrbek, L. 2015. Quantum turbulence of bellowsdriven 4He superflow: decay. Phys. Rev B, 92, 184503.CrossRefGoogle Scholar
Baggaley, A. W., and Laizet, S. 2013. Vortex line density in counterflowing He II with laminar and turbulent normal fluid velocity profiles. Phys. Fluids, 25, 115101.CrossRefGoogle Scholar
Baggaley, A. W., and Laurie, J. 2014. Kelvin-wave cascade in the vortex filament model. Phys. Rev. B, 89, 014504.CrossRefGoogle Scholar
Baksmaty, L. O.,Woo, S. J., Choi, S., and Bigelow, N. P. 2004. Tkachenko waves in rapidly rotating Bose–Einstein condensates. Phys. Rev. Lett., 92, 160405.CrossRefGoogle ScholarPubMed
Bardeen, J., and Johnson, J. L. 1972. Josephson current flow in pure superconducting– normal–superconducting junctions. Phys. Rev. B, 5, 72–78.CrossRefGoogle Scholar
Barenghi, C. F., Donnelly, R. J., and Vinen, W. F. 1983. Friction on quantized vortices in helium II. A review. J. Low Temp. Phys., 52, 189–247.CrossRefGoogle Scholar
Barenghi, C. F., Donnelly, R. J., and Vinen, W. F. 1985. Thermal excitation of waves on quantized vortices. Phys. Fluids, 28, 498–504.
Barenghi, C. F., Hänninen, R., and Tsubota, M. 2006. Anomalous translational velocity of vortex rings with finite-amplitude Kelvin waves. Phys. Rev. E, 74, 046303.CrossRefGoogle Scholar
Barenghi, C. F., Sergeev, Y. A., Suramlishvili, N., and van Dijk, P. J. 2009. Interaction of ballistic quasiparticles and vortex configurations in superfluid 3He-B. Phys. Rev. B, 79, 024508.CrossRefGoogle Scholar
Barenghi, C. F., L'vov, V. S., and Roche, P.-E. 2014. Experimental, numerical, and analytical velocity spectra in turbulent quantum fluid. PNAS, 111(suppl.1), 4683– 4690.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1970. An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Baym, G. 2003. Tkachenko modes of vortex lattices in rapidly rotating Bose–Einstein condensates. Phys. Rev. Lett., 91, 110402.CrossRefGoogle ScholarPubMed
Baym, G. 2004. Vortex lattices in rapidly rotating Bose–Einstein condensates: modes and correlation functions. Phys. Rev. A, 69, 043618.Google Scholar
Baym, G., and Chandler, E. 1983. The hydrodynamics of rotating superfluids. I. Zerotemperature, nondissipative theory. J. Low Temp. Phys., 50, 57–87.CrossRefGoogle Scholar
Baym, G., and Pethick, C. J. 2004. Vortex core structure and global properties of rapidly rotating Bose–Einstein condensates. Phys. Rev. A, 69, 043619.Google Scholar
Baym, G., Pethick, C., Pines, D., and Ruderman, M. 1969. Spin up in neutron stars: the future of the Vela pulsar. Nature (London), 224, 872–874.CrossRefGoogle Scholar
Bekarevich, I. L., and Khalatnikov, I. M. 1961. Phenomenological derivation of the equations of vortex motion in He II. Zh. Eksp. Teor. Fiz., 40, 920–925 [Sov. Phys.–JETP, 13, 643–646 (1961)].Google Scholar
Bendt, P. J., and Oliphant, T. A. 1961. Hydrodynamics of helium II in annular geometry. Phys. Rev. Lett., 6, 213–215.CrossRefGoogle Scholar
Berezinskii, V. L. 1970. Destruction of long-range order in one-dimensional and twodimensional systems having a continuous symmetry group. I. Classical systems. Zh. Eksp. Teor. Fiz., 59, 907–920 [Sov. Phys.–JETP, 32, 493–500 (1970)].Google Scholar
Berezinskii, V. L. 1971. Destruction of long-range order in one-dimensional and twodimensional systems possessing a continuous symmetry group. II. Quantum systems. Zh. Eksp. Teor. Fiz., 61, 1144–1156 [Sov. Phys.–JETP, 34, 610–616 (1972)].Google Scholar
Berry, M. V. 1984. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London Ser. A, 392, 45–57.CrossRefGoogle Scholar
Berry, M. V. 2010. Asymptotics of the many-whirls representation for Aharonov–Bohm scattering. J. Phys. A, 43, 354002.CrossRefGoogle Scholar
Berry, M. V., Chambers, R. G., Large, M. D., Upstill, C., and Walmsley, J. C. 1980. Wavefront dislocations in the Aharonov–Bohm effect and its water wave analogue. Eur. J. Phys., 1, 154–162.CrossRefGoogle Scholar
Bevan, T. D. C., Manninen, A. J., Cook, J. B., Hook, J. R., Hall, H. E., Vachaspati, T., and Volovik, G. E. 1997a. Momentogenesis by 3He vortices: an experimental analog of primordial baryogenesis. Nature, 386, 689–692.CrossRefGoogle Scholar
Bevan, T. D. C., Manninen, A. J., Cook, J. B., Alles, H., Hook, J. R., and Hall, H. E. 1997b. Vortex mutual friction in superfluid 3He. J. Low Temp. Phys., 109, 423–459.Google Scholar
Bewley, G. P., Lathrop, D. P., Maas, L. R. M., and Sreenivasan, K. R. 2007. Inertial waves in rotating grid turbulence. Phys. Fluids, 19, 071701.CrossRefGoogle Scholar
Bishop, D. J., and Reppy, J. D. 1978. Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. Lett., 40, 1727–1730.CrossRefGoogle Scholar
Bishop, D. J., and Reppy, J. D. 1980. Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. B, 22, 5171–5185.CrossRefGoogle Scholar
Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I., and Vinokur, V. M. 1994. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66, 1125–1388.CrossRefGoogle Scholar
Bloch, I., Dalibard, J., and Zwerger, W. 2008. Many-body physics with ultracold gases. Rev. Mod. Phys., 80, 885–964.CrossRefGoogle Scholar
Blonder, G. E., Tinkham, M., and Klapwijk, T. M. 1982. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B, 25, 4515–4532.CrossRefGoogle Scholar
Bobbert, P. A. 1992. Simulation of vortex motion in underdamped two-dimensional arrays of Josephson junctions. Phys. Rev. B, 45, 7540–7543.CrossRefGoogle ScholarPubMed
Bogolyubov, N. N. 1947. On the theory of superfluidity. J. Phys. (USSR), 11, 23–32.Google Scholar
Booss-Bavnbek, B., and Wojciechowski, K. P. 1993. Elliptic Boundary Problems for Dirac Operators, Birkhäuser. Chapter 17.CrossRefGoogle Scholar
Boué, L., L'vov, V., and Procaccia, I. 2012. Temperature suppression of Kelvin-wave turbulence in superfluids. Europhys. Lett., 99, 46003.CrossRefGoogle Scholar
Bowley, R.M., Kirk, A., and King, P. J. 1992. Phase slippage in thin superfluid films. J. Low Temp. Phys., 88, 73–99.CrossRefGoogle Scholar
Brandt, E. H. 1969. Die Behandlung von Fehlern im Flußliniengitter der Supraleiter 2. Art in der Nähe von Hc2. Phys. Status Solidi, 36, 381–391.Google Scholar
Brandt, E. H. 1995. The flux-line lattice in superconductors. Rep. Prog. Phys., 58, 1465– 1594.CrossRefGoogle Scholar
Braude, V., and Sonin, E. B. 2006. Orbital magnetic dynamics in chiral p-wave superconductors. Phys. Rev. B, 74, 064501.CrossRefGoogle Scholar
Bretin, V., Rosenbusch, P., Chevy, F., Shlyapnikov, G. V., and Dalibard, J. 2003. Quadrupole oscillation of a single-vortex Bose–Einstein condensate: evidence for Kelvin modes. Phys. Rev. Lett., 90, 100403.CrossRefGoogle ScholarPubMed
Brinkman, W. F., and Cross, M. C. 1978. Spin and orbital dynamics of superfluid 3He. Pages 105–190 of: Brewer, D. F. (ed.), Progress in Low Temperature Physics, vol. 7A. North-Holland.Google Scholar
Brown, Y. J., and Hess, G. B. 1982. Inhomogeneous nucleation of superfluid vorticity at a sharp edge. J. Low Temp. Phys., 49, 267–277.CrossRefGoogle Scholar
Buerger, M. J. 1963. Elementary Crystallography. An Introduction to the Fundamental Geometrical Features of Crystalls. Wiley.Google Scholar
Caldeira, A. O., and Leggett, A. J. 1983. Quantum tunneling in a dyssipative system. Ann. Phys. (N.Y.), 149, 374–456.CrossRefGoogle Scholar
Campbell, L. J. 1981. Transverse normal modes of finite vortex arrays. Phys. Rev. A, 24, 514–534.CrossRefGoogle Scholar
Campbell, L. J., and Krasnov, Yu. K. 1981. Edge waves of a vortex continuum. Phys. Lett. A, 84, 75–79.CrossRefGoogle Scholar
Campbell, L. J., and Krasnov, Yu. K. 1982. Transient behavior of rotating superfluid helium. J. Low Temp. Phys., 49, 377–396.CrossRefGoogle Scholar
Campbell, L. J., and Ziff, R. M. 1979. Vortex patterns and energies in a rotating superfluid. Phys. Rev. B, 20, 1886–1902.CrossRefGoogle Scholar
Caroli, C., de Gennes, P. G., and Matricon, J. 1964. Bound fermion states on a vortex line in a type II superconductor. Phys. Lett., 9, 307–309.CrossRefGoogle Scholar
Cazalilla, M. 2003. Surface modes of ultracold atomic clouds with a very large number of vortices. Phys. Rev. A, 67, 063613.CrossRefGoogle Scholar
Cerda-Mèndez, E. A., Krizhanovskii, D. N., Wouters, M., Bradley, R., Biermann, K., Guda, K., Hey, R., Santos, P. V., Sarkar, D., and Skolnick, M. S. 2010. Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett., 105, 116402.CrossRefGoogle ScholarPubMed
Chandler, E., and Baym, G. 1986. The hydrodynamics of rotating superfluids. II. Finite temperature, dissipation theory. J. Low Temp. Phys., 62, 119–142.CrossRefGoogle Scholar
Cheng, D. K., Cromar, M. W., and Donnelly, R. J. 1973. Influence of an axial heat current on negative-ion trapping in rotating helium II. Phys. Rev. Lett., 31, 433–436.CrossRefGoogle Scholar
Cheng, M., Lou, J., and Lim, T. T. 2010. Vortex ring with swirl: a numerical study. Phys. Fluids, 22, 097101.CrossRefGoogle Scholar
Cleary, R. M. 1968. Scattering of single particle excitations by a vortex in a clean type II superconductor. Phys. Rev., 175, 587.CrossRefGoogle Scholar
Clem, J. R.,Weigand, M., Durrell, J. H., and Campbell, A. M. 2011. Theory and experiment testing flux-line-cutting physics. Supercond. Sci. Technol., 24, 062002.CrossRefGoogle Scholar
Coddington, I., Engels, P., Schweikhard, V., and Cornell, E. A. 2003. Observation of Tkachenko oscillations in rapidly Rotating Bose–Einstein condensates. Phys. Rev. Lett., 91, 100402.CrossRefGoogle ScholarPubMed
Combescot, R., and Dombre, T. 1986. Twisting in superfluid 3He-A and consequences for hydrodynamics at T = 0. Phys. Rev. B, 33, 79–90.CrossRefGoogle ScholarPubMed
Cooper, N. R. 2008. Rapidly rotating atomic gases. Adv. Phys., 6, 539–616.Google Scholar
Cooper, N. R., Wilkin, N. K., and Gunn, J. M. F. 2001. Quantum phases of vortices in rotating Bose–Einstein condensates. Phys. Rev. Lett., 87, 120405.CrossRefGoogle ScholarPubMed
Cooper, N. R., Komineas, S., and Read, N. 2004. Vortex lattices in the lowest Landau level for confined Bose–Einstein condensates. Phys. Rev. A, 70, 033604.CrossRefGoogle Scholar
Cozzini, M., Pitaevskii, L. P., and Stringari, S. 2004. Tkachenko oscillations and the compressibility of a rotating Bose–Einstein condensate. Phys. Rev. Lett., 92, 220401.CrossRefGoogle ScholarPubMed
Cozzini, M., Stringari, S., and Tozzo, C. 2006. Vortex lattices in Bose–Einsten condensates: from the Thomas–Fermi regime to the lowest-Landau-level regime. Phys. Rev. A, 73, 023615.CrossRefGoogle Scholar
Cross, M. C. 1975. A generalized Ginzburg–Landau approach to the superfluidity of helium 3. J. Low Temp. Phys., 21, 525–534. Erratum, 24, 261.CrossRefGoogle Scholar
Cross, M. C. 1977. Orbital dynamics of the Anderson–Brinkman–Morel phase of superfluid 3He. J. Low Temp. Phys., 26, 165–191.CrossRefGoogle Scholar
Cross, M. C. 1983. Flow dissipation in the 3He superfluids. Page 325 of: Adams, E. D., and Ihas, J. J. (eds.), Quantum Fluids and Solids. American Institute of Physics.Google Scholar
Curran, P. J., Bending, S. J., Desoky, W. M., Gibbs, A. S., Lee, S. L., and Mackenzie, A. P. 2014. Search for spontaneous edge currents and vortex imaging in Sr2RuO4 mesostructures. Phys. Rev. B, 89, 144504.CrossRefGoogle Scholar
Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71, 463–512.CrossRefGoogle Scholar
Davidson, P. A. 2013. Turbulence in Rotating, Stratified, and Electrically Conducting Fluids. Cambridge University Press.CrossRefGoogle Scholar
Davis, J. C., Close, J. D., Zieve, R., and Packard, R. E. 1991. Observation of quantized circulation in superfluid 3He-B. Phys. Rev. Lett., 66, 329–332.CrossRefGoogle ScholarPubMed
Davis, J. C., Steinhauer, J., Schwab, K., Mukharsky, Yu. M., Sasaki, A.Amarand, Y., and Packard, R. E. 1992. Evidence for quantum tunneling of phase-slip vortices in superfluid 4He. Phys. Rev. Lett., 69, 323–326.CrossRefGoogle ScholarPubMed
Davis, S. I., Hendry, P. C., McClintock, P. V. E., and Nichol, H. 2001. Experiments on quantized turbulence at mK temperatures. Pages 73–79 of: Barenghi, C. F., Donnelly, R. J., and Vinen, W. F. (eds.), Quantized Vortex Dynamics and Superfluid Turbulence. Springer-Verlag.Google Scholar
de Gennes, P. G. 1966. Superconductivity of Metals and Alloys. Benjamin.Google Scholar
Donnelly, R. J. 1991. Quantized Vortices in Helium II. Cambridge University Press.Google Scholar
Dorsey, A. T. 1992. Vortex motion and the Hall effect in type-II superconductors: a timedependent Ginzburg-Landau theory approach. Phys. Rev. B, 46, 8376–8392.CrossRefGoogle Scholar
Duan, J.-M. 1994. Mass of a vortex line in superfluid 4He: effects of gauge-symmetry breaking. Phys. Rev. B, 49, 12381–12383.CrossRefGoogle ScholarPubMed
Duan, J.-M., and Leggett, A. J. 1992. Inertial mass of a moving singularity in a Fermi superfluid. Phys. Rev. Lett., 68, 1216–1219. Erratum, 69, 1148.CrossRefGoogle Scholar
Dyson, F. 1971. Neutron Stars and Pulsars. Fermi Lectures. Accademia Nazionale dei Lincei, Roma.Google Scholar
Eckern, U., and Schmid, A. 1989. Quantum vortex dynamics in granular superconducting films. Phys. Rev. B, 39, 6441–6454.CrossRefGoogle ScholarPubMed
Eltsov, V. B., Finne, A. P., Hänninen, R., Kopu, J., Krusius, M., Tsubota, M., and Thuneberg, E. V. 2006. Twisted vortex state. Phys. Rev. Lett., 96, 215302.CrossRefGoogle ScholarPubMed
Eltsov, V. B., Golov, A. I., de Graaf, R., Hänninen, R., Krusius, M., L'vov, V. S., and Solntsev, R. E. 2007. Quantum turbulence in a propagating superfluid vortex front. Phys. Rev. Lett., 99, 265301.CrossRefGoogle Scholar
Eltsov, V. B., de Graaf, R., Hänninen, R., Krusius, M., Solntsev, R. E., L'vov, V. S., Golov, A. I., and Walmsley, P. M. 2009. Turbulent dynamics in rotating helium superfluids. Pages 45–146 of: Halperin, B., and Tsubota, M. (eds.), Progress in Low Temperature Physics: Quantum Turbulence. Progress in Low Temperature Physics, vol. 16. Elsevier.CrossRefGoogle Scholar
Eltsov, V. B., de Graaf, R., Heikkinen, P. J., Hosio, J. J., Hänninen, R., Krusius, M., and L'vov, V. S. 2010. Stability and dissipation of laminar vortex flow in superfluid 3He-B. Phys. Rev. Lett., 105, 125301.CrossRefGoogle ScholarPubMed
Eltsov, V., Hänninen, R., and Krusius, M. 2014. Quantum turbulence in superfluids with wall-clamped normal component. PNAS, 111(suppl. 1), 4711–4718.CrossRefGoogle ScholarPubMed
Fetter, A. L. 1964. Scattering of sound by a classical vortex. Phys. Rev., 136, A1488– A1493.CrossRefGoogle Scholar
Fetter, A. L. 1967. Quantum theory of superfluid vortices. I. Liquid helium II. Phys. Rev., 162, 143–153.CrossRefGoogle Scholar
Fetter, A. L. 2009. Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys., 81, 647–691.CrossRefGoogle Scholar
Feynman, R. P. 1955. Application of quantum mechanics to liquid helium. Pages 17–53 of: Gorter, C. J. (ed.), Progress in Low Temperature Physics, vol. 1. North-Holland.Google Scholar
Finne, A. P., Araki, T., Blaauwgeers, R., Eltsov, V. B., Kopnin, N. B., Krusius, M., Skrbek, L., Tsubota, M., and Volovik, G. E. 2003. An intrinsic velocity-independent criterion for superfluid turbulence. Nature, 424, 1022–1025.CrossRefGoogle ScholarPubMed
Fischer, U. R. 1998. Geometric laws of vortex quantum tunneling. Phys. Rev. B, 58, 105– 108. Erratum, 58, 105.CrossRefGoogle Scholar
Fisher, M. P. A., Weichman, P. B., Grinstein, G., and Fisher, D. S. 1989. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40, 546–570.CrossRefGoogle ScholarPubMed
Fisher, S. N., and Pickett, G. R. 2009. Quantum turbulence in superfluid 3He at very low temperatures. Pages 147–194 of: Halperin, B., and Tsubota, M. (eds.), Progress in Low Temperature Physics: Quantum Turbulence. Progress in Low Temperature Physics, vol. 16. Elsevier.CrossRefGoogle Scholar
Fonda, E., Meichle, D. P., Ouellette, N. T., Hormoz, S., and Lathrop, D. P. 2014. Direct observation of Kelvin waves excited by quantized vortex reconnection. PNAS, 111(suppl.1), 4707–4710.CrossRefGoogle ScholarPubMed
Frisch, U. 1995. Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Fukuda, M., Zalalutdinov, M. K., Kovacik, V., Igarashi, T., Obata, T., Ooyama, K., and Kubota, M. 1998. The superfluid transition and vortex dynamics in submonolayer superfluid 4He films in porous glass under rotation. J. Low Temp. Phys., 113, 417–422.Google Scholar
Fukuda, M., Zalalutdinov, M. K., Kovacik, V., Minoguchi, T., Obata, T., Kubota, M., and Sonin, E. B. 2005. Rotation-induced three-dimensional vorticity in 4He superfluid films adsorbed on a porous glass. Phys. Rev. B, 71, 212502.CrossRefGoogle Scholar
Fultz, D. 1959. A note on overstability and elastoid-inertia oscillations of Kelvin, Solberg, and Bjerknes. J. Metereol., 16, 199–208.Google Scholar
Gallet, F., and Williams, G. A. 1989. Superfluid transition of 4He films adsorbed on multiply connected surfaces. Phys. Rev. B, 39, 4673–4676.CrossRefGoogle ScholarPubMed
Gal'perin, Yu. M., and Sonin, E. B. 1976. Motion of vortices and electrical conductivity of pure type II supercomductors in weak magnetic fields. Fiz. Tverd. Tela (Leningrad), 18, 3034–3041 [Sov. Phys.–Solid State, 18, 1768–1772 (1976)].Google Scholar
Gamtsemlidze, G. A., Dzhaparidze, Sh. A., Salukvadze, Ts. M., and Turkadze, K. A. 1966. Determination of the slip coefficient of vortices in rotating helium II. Zh. Eksp. Teor. Fiz., 50, 323–326 [Sov. Phys.–JETP, 23, 214–216 (1966)].Google Scholar
Geller, M. R., Wexler, C., and Thouless, D. J. 1998. Transverse force on a quantized vortex in a superconductor. Phys. Rev. B, 57, R8119–R8122.CrossRefGoogle Scholar
Gifford, S. A., and Baym, G. 2004. Vortex lattice stability and phase coherence in threedimensional rapidly rotating Bose–Einstein condensates. Phys. Rev. A, 70, 033602. Erratum, 78, 029904(E) (2008).CrossRefGoogle Scholar
Gillis, K. A., Voltz, S., and Mochel, J. M. 1985. Superfluid flow dissipation in two dimensions. J. Low Temp. Phys., 61, 173–183.CrossRefGoogle Scholar
Ginzburg, V. L., and Kirzhnitz, D. A. 1964. On the superfluidity of neutron stars. Zh. Eksp. Teor. Fiz., 47, 2006–2007 [Sov. Phys.–JETP, 20, 1346–1348 (1965)].Google Scholar
Ginzburg, V. L., and Landau, L. D. 1950. On the theory of superconductivity. Zh. Eksp. Teor. Fiz., 20, 1064.Google Scholar
Ginzburg, V. L., and Pitaevskii, L. P. 1958. On the theory of superfluidity. Zh. Eksp. Teor. Fiz., 34, 1240–1245 [Sov. Phys.–JETP, 7, 858–861 (1958)].Google Scholar
Ginzburg, V. L., and Sobyanin, A. A. 1976. Superfluidity of helium II near the λ point. Usp. Fiz. Nauk, 120, 153–216 [Sov. Phys.–Usp., 19, 773–812 (1976)].CrossRefGoogle Scholar
Ginzburg, V. L., and Sobyanin, A. A. 1982. On the theory of superfluidity of helium II near the λ point. J. Low Temp. Phys., 49, 507–543.CrossRefGoogle Scholar
Giorgini, S., and Bowley, R. M. 1996. Nonlinear AC response in superfluid films. J. Low Temp. Phys., 102, 171–191.CrossRefGoogle Scholar
Glaberson, W. I. 1982. Vortex waves. Physica B+C, 109–110, 1567–1574.Google Scholar
Glaberson, W. I., Johnson, W. W., and Ostermeier, R. M. 1974. Instability of a vortex array in He II. Phys. Rev. Lett., 33, 1197.CrossRefGoogle Scholar
Gordon, M. J. V., Williams, G. A., and Packard, R. E. 1978. Vortex photography: a progress report. J. Phys. (Paris), 39, C6, 172–173.CrossRefGoogle Scholar
Gor'kov, L. P., and Kopnin, N. B. 1975. Vortex motion and resistivity of type-II superconductors in a magnetic field. Usp. Fiz. Nauk, 116, 413–448 [Sov. Phys.–Usp., 18, 496–513 (1975)].CrossRefGoogle Scholar
Gradstein, I. S., and Ryzhik, I. M. 1965. Table of Integrals, Series, and Products. Academic Press.Google Scholar
Greenspan, H. P. 1968. The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Gross, E. P. 1961. Structure of a quantized vortex in boson systems. Nuovo Cimento, 20, 454.CrossRefGoogle Scholar
Guo, W., Cahn, S. B., Nikkel, J. A., Vinen, W. F., and McKinsey, D. N. 2010. Visualization study of counterflow in superfluid 4He using metastable helium molecules. Phys. Rev. Lett., 105, 045301.CrossRefGoogle ScholarPubMed
Hakonen, P. J., Ikkala, O. T., Islander, S. T., Lounasmaa, O. V., Markkula, T. K., Roubeau, P., Saloheimo, K. M., Volovik, G. E., Andronikashvili, E. L., Garibashvili, D. I., and Tsakadze, J. S. 1982. NMR experiments on rotating superfluid 3He-A: evidence for vorticity. Phys. Rev. Lett., 48, 1838–1841.CrossRefGoogle Scholar
Hall, H. E. 1958. An experimental and theoretical study of torsional oscillations in uniformly rotating liquid helium II. Proc. R. Soc. London Ser. A, 245, 546–561.CrossRefGoogle Scholar
Hall, H. E. 1960. The rotation of liquid helium II. Adv. Phys., 9, 89–146.CrossRefGoogle Scholar
Hall, H. E. 1985. Evidence for intrinsic angular momentum in superfluid 3He-A. Phys. Rev. Lett., 54, 205–208.CrossRefGoogle ScholarPubMed
Hall, H. E., and Hook, J. R. 1986. The hydrodynamics of superfluid 3He. Pages 143–264 of: Brewer, D. F. (ed.), Progress in Low Temperatyre Physics, vol. 9. North-Holland.Google Scholar
Hall, H. E., and Hook, J. R. 1998. Comment on “Magnus and Iordanskii forces in superfluids”. Phys. Rev. Lett., 80, 4356–4356.CrossRefGoogle Scholar
Hall, H. E., and Vinen, W. F. 1956a. The rotation of liquid helium II. I. Experiments on the propagation of second sound in uniformly rotating helium II. Proc. R. Soc. London Ser. A, 238, 204–214.Google Scholar
Hall, H. E., and Vinen, W. F. 1956b. The rotation of liquid helium II. II. The theory of mutual friction in uniformly rotating helium II. Proc. R. Soc. London Ser. A, 238, 215–234.Google Scholar
Halley, J. W., and Cheung, A. 1968. Theory of vortex resonance in liquid helium. Phys. Rev., 168, 209–221.CrossRefGoogle Scholar
Halley, J. W., and Ostermeier, R. M. 1977. A new calculation of the ion velocity shift in a vortex resonance experiment in He II. J. Low Temp. Phys., 26, 877–898.CrossRefGoogle Scholar
Hänninen, R., and Baggaley, A. W. 2014. Vortex filament method as a tool for computational visualization of quantum turbulence. PNAS, 111(suppl.1), 4667–4674.CrossRefGoogle ScholarPubMed
Hänninen, R., and Hietala, N. 2013. Identification of Kelvin waves: numerical challenges. J. Low Temp. Phys., 171, 485–496.CrossRefGoogle Scholar
Hasimoto, H. 1972. A solution on a vortex filament. J. Fluid Mech., 51, 477–485.CrossRefGoogle Scholar
Haskell, B. 2011. Tkachenko modes in rotating neutron stars: the effect of compressibility and implications for pulsar timing noise. Phys. Rev. D, 83, 043006.CrossRefGoogle Scholar
Hegde, S. G., and Glaberson, W. I. 1980. Pinning of superfluid vortices to surfaces. Phys. Rev. Lett., 45, 190–193.CrossRefGoogle Scholar
Helm, J. L., Barenghi, C. F., and Youd, A. J. 2011. Slowing down of vortex rings in Bose– Einsten condensates. Phys. Rev. A, 045601.
Hendry, P. C., Lawson, N. S., McClintock, P. V. E., Williams, C. D. H., and Bowley, R. M. 1988. Macroscopic quantum tunneling of vortices in He II. Phys. Rev. Lett., 60, 604–607.CrossRefGoogle ScholarPubMed
Hillel, A. J., and Vinen, W. F. 1983. The mutual friction parameters in liquid helium II: a revised calculation. J. Phys. C, 16, 3267–3272.CrossRefGoogle Scholar
Hills, N., and Roberts, R. P. H. 1978. Healing and relaxation in flows of helium II. Part II. First, second, and fourth sound. J. Low Temp. Phys., 30, 709–727.CrossRefGoogle Scholar
Ho, T.-L. 1978. Coreless vortices in superfluid 3He-A: topological structure, nucleation, and the screening effect. Phys. Rev. B, 18, 1144–1153.CrossRefGoogle Scholar
Ho, T.-L. 2001. Bose–Einstein condensates with large number of vortices. Phys. Rev. Lett., 87, 060403.CrossRefGoogle ScholarPubMed
Ho, T.-L., and Mermin, N. D. 1980. Equilibrium order parameters and chemical potentials in rotating superfluids. Phys. Rev. B, 21, 5190–5197.CrossRefGoogle Scholar
Hohenberg, P. C., and Halperin, B. I. 1977. Theory of dynamic critical phenomena. Rev. Mod. Phys., 49, 435–479.CrossRefGoogle Scholar
Hosio, J. J., Eltsov, V. B., de Graaf, R., Heikkinen, P. J., Hänninen, R., Krusius, M., L'vov, V. S., and Volovik, G. E. 2011. Superfluid vortex front at T → 0: decoupling from the reference frame. Phys. Rev. Lett., 107, 135302.CrossRefGoogle Scholar
Hosio, J. J., Eltsov, V. B., Heikkinen, P. J., Hänninen, R., Krusius, M., and L'vov, V. S. 2013. Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures. Nature Commun., 4, 1614.CrossRefGoogle ScholarPubMed
Hu, C. R., and Saslov, W. M. 1977. Hydrodynamics of 3He-A with arbitrary textures. Phys. Rev. Lett., 38, 605–609.CrossRefGoogle Scholar
Huang, W., Taylor, E., and Kallin, C. 2014. Vanishing edge currents in non-p-wave topological chiral superconductors. Phys. Rev. B, 90, 224519.CrossRefGoogle Scholar
Huang, W., Lederer, S., Taylor, E., and Kallin, C. 2015. Nontopological nature of the edge current in a chiral p-wave superconductor. Phys. Rev. B, 91, 094507.CrossRefGoogle Scholar
Huber, S. D., and Lindner, N. H. 2011. Topological transitions for lattice bosons in a magnetic field. PNAS, 108, 19925–19930.CrossRefGoogle Scholar
Ignatiev, R. N., and Sonin, E. B. 1981. Finite-size vortex lattice in a rotating superfluid liquid. Zh. Eksp. Teor. Fiz., 81, 2059–2062 [Sov. Phys.–JETP, 54, 1087–1088 (1981)].Google Scholar
Ihas, G. G., Avenel, O., Aarts, R., Salmelin, R., and Varoquaux, E. 1992. Quantum nucleation of vortices in the flow of superfluid 4He through an orifice. Phys. Rev. Lett., 69, 327–330.CrossRefGoogle ScholarPubMed
Ilisavskii, Y., Goltsev, A., Dyakonov, K., Popov, V., Yakhkind, E., Dyakonov, V. P., Gierlowski, P., Klimov, A., Lewandowski, S. J., and Szymczak, H. 2001. Anomalous acoustoelectric effect in La0.67Ca0.33MnO3 films. Phys. Rev. Lett., 87, 146602.CrossRefGoogle ScholarPubMed
Iordanskii, S. V. 1964. On the mutual friction between the normal and superfluid components in a rotating Bose gas. Ann. Phys. (N.Y.), 29, 335–349.Google Scholar
Iordanskii, S. V. 1965a. Mutual friction force in a rotating Bose gas. Zh. Eksp. Teor. Fiz., 49, 225–236 [Sov.Phys.–JETP, 22, 160–167 (1966)].Google Scholar
Iordanskii, S. V. 1965b. Vortex ring formation in a superfluid. Zh. Eksp. Teor. Fiz., 48, 708–714 [Sov.Phys.–JETP, 21, 467–471 (1965)].Google Scholar
Ishii, C. 1970. Josephson currents through junctions with normal metal barriers. Prog. Theor. Phys., 44, 1525–1547.CrossRefGoogle Scholar
Jackson, B., McCann, J., and Adams, C. 1999. Vortex line and ring dynamics in trapped Bose–Einstein condensates. Phys. Rev. A, 61, 013604.CrossRefGoogle Scholar
Kagan, M. Yu. 2013. Modern Trends in Superconductivity and Superfluidity. Springer.CrossRefGoogle Scholar
Kambe, T. 1986. Acoustic emissions by vortex motions. J. Fluid Mech., 173, 643–666.CrossRefGoogle Scholar
Karimäki, J. M., Hänninen, R., and Thuneberg, E. V. 2012. Asymptotic motion of a single vortex in a rotating cylinder. Phys. Rev. B, 85, 224519.CrossRefGoogle Scholar
Karn, P. W., Starks, D. R., and Zimmermann, W. 1980. Observation of quantization of circulation in rotating superfluid 4He. Phys. Rev. B, 21, 1797–1805.CrossRefGoogle Scholar
Kemoklidze, M. P., and Khalatnikov, I. M. 1964. On the irrotational region in rotating He II. Zh. Eksp. Teor. Fiz., 46, 165–166 [Sov. Phys.–JETP, 19, 118–119 (1964).Google Scholar
Khalatnikov, I. M. 2000. An Introduction to the Theory of Superfluidity. Perseus Publishing, Cambridge.Google Scholar
Khalatnikov, I. M., and Lebedev, V. V. 1977. Lagrange equations of the hydrodynamics of the anisotropic superfluid liquid 3He-A. Pis'ma Zh. Eksp. Teor. Fiz., 25, 377–381 [JETP Lett., 25, 351–354 (1977)].Google Scholar
Khomenko, D., Kondaurova, L., L'vov, V. S., Mishra, P., Pomyalov, A., and Procaccia, I. 2015. Dynamics of the density of quantized vortex lines in superfluid turbulence. Phys. Rev. B, 91, 180504(R).CrossRefGoogle Scholar
Kiknadze, L., and Mamaladze, Yu. 2002. The waves on the vortex ring in He II. J. Low Temp. Phys., 126, 321–326.CrossRefGoogle Scholar
Kirtley, J. R., Kallin, C., Hicks, C. W., Kim, E.-A., Liu, Y., Moler, K. A., Maeno, Y., and Nelson, K. D. 2007. Upper limit on spontaneous supercurrents in Sr2RuO4. Phys. Rev. B, 76, 014526.CrossRefGoogle Scholar
Kivotides, D., Vassilicos, J. C., Samuels, D. C., and Barenghi, C. F. 2001. Kelvin waves cascade in superfluid turbulence. Phys. Rev. Lett., 86, 3080–3083.CrossRefGoogle ScholarPubMed
Kondaurova, L., L'vov, V., Pomyalov, A., and Procaccia, I. 2014. Structure of a quantum vortex tangle in 4He counterflow turbulence. Phys. Rev. B, 89, 014502.CrossRefGoogle Scholar
Koplik, J., and Levine, H. 1993. Vortex reconnection in superfluid helium. Phys. Rev. Lett., 71, 1375–1378.CrossRefGoogle ScholarPubMed
Kopnin, N. B. 1978a. Dissipative motion of superfluid 3He in the A phase. Zh. Eksp. Teor. Fiz., 74, 1538–1553 [Sov. Phys.–JETP, 47, 804–811 (1978)].Google Scholar
Kopnin, N. B. 1978b. Frequency singularities of the dissipation in the mixed state of pure type-II superconductors at low temperatures. Pis'ma Zh. Eksp. Teor. Fiz., 27, 417–420 [JETP Lett., 27, 390–393 (1978)].Google Scholar
Kopnin, N. B. 2001. Theory of Nonequilibrium Superconductivity. Oxford University Press.CrossRefGoogle Scholar
Kopnin, N. B. 2002. Vortex dynamics and mutual friction in superconductors and Fermi superfluids. Rep. Prog. Phys., 65, 1633–1678.CrossRefGoogle Scholar
Kopnin, N. B., and Kravtsov, V. E. 1976a. Conductivity and Hall effect of pure type-II superconductors at low temperatures. Pis'ma Zh. Eksp. Teor. Fiz., 23, 631–634 [JETP Lett., 23, 578–581 (1976)].Google Scholar
Kopnin, N. B., and Kravtsov, V. E. 1976b. Forces acting on vortices moving in a pure type II superconductor. Zh. Eksp. Teor. Fiz., 71, 1644–1656 [Sov. Phys.–JETP, 44, 861–867 (1976)].Google Scholar
Kopnin, N. B., and Vinokur, V. M. 1998. Dynamic vortex mass in clean Fermi superfluids and superconductors. Phys. Rev. Lett., 81, 3952–3955.CrossRefGoogle Scholar
Kosterlitz, J. M. 1974. The critical prperties of the two-dimensional xy model. J. Phys. C, 7, 1046–1060.CrossRefGoogle Scholar
Kosterlitz, J. M., and Thouless, D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 6, 1181–1203.CrossRefGoogle Scholar
Kozik, E., and Svistunov, B. 2004. Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett., 92, 035301.CrossRefGoogle ScholarPubMed
Kozik, E., and Svistunov, B. 2005. Vortex-phonon interaction. Phys. Rev. B, 72, 172505.CrossRefGoogle Scholar
Kozik, E., and Svistunov, B. 2008. Kolmogorov and Kelvin-wave cascades of superfluid turbulence at T = 0: what lies between. Phys. Rev. B, 77, 060502(R).CrossRefGoogle Scholar
Kozik, E. V., and Svistunov, B. V. 2009. Theory of decay of superfluid turbulence in the low-temperature limit. J. Low Temp. Phys., 156, 215–267.CrossRefGoogle Scholar
Kozik, E., and Svistunov, B. 2010a. Geometric symmetries in superfluid vortex dynamics. Phys. Rev. B, 82, 140510(R).CrossRefGoogle Scholar
Kozik, E. V., and Svistunov, B. V. 2010b. Comment on ‘Symmetries and interaction coefficients of Kelvin waves’ by Lebedev and L'vov. J. Low Temp. Phys., 161, 603–605.CrossRefGoogle Scholar
Krstulovic, G. 2012. Kelvin-wave cascade and dissipation in low-temperature superfluid vortices. Phys. Rev. E, 86, 055301.CrossRefGoogle ScholarPubMed
Krstulovic, G., and Brachet, M. 2011. Anomalous vortex-ring velocities induced by thermally excited Kelvin waves and counterflow effects in superfluids. Phys. Rev. B, 83, 132506.CrossRefGoogle Scholar
Krusius, M., Korhonen, J. S., Kondo, Y., and Sonin, E. B. 1993. Collective motion of quantized vortex lines in rotating superfluid 3He-B. Phys. Rev. B, 47, 15113–15144.CrossRefGoogle ScholarPubMed
Kulik, I. O. 1969. Macroscopic quantization and the proximity effect in SNS junctions. Zh. Eksp. Teor. Fiz., 57, 1745–1759 [Sov. Phys.–JETP, 30, 944 (1970)].Google Scholar
Labusch, R. 1969. Elastic constants of the fluxoid lattice near the upper critical field. Phys. Status Solidi, 32, 439–442.CrossRefGoogle Scholar
Lamb, H. 1997. Hydrodynamics. Cambridge University Press.Google Scholar
Landau, L. D. 1941. Theory of superfluidity of helium II. J. Phys. (USSR), 5, 71.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1982a. Quantum Mechanics. Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1982b. Statistical Physics. Part I. Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1984. Electrodynamics of continuous media. Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1986. Theory of Elasticity. Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1987. Fluid Mechanics. Pergamon Press.Google Scholar
Langer, J. S., and Fisher, M. E. 1967. Intrinsic critical velocity of a superfluid. Phys. Rev. Lett., 19, 560–563.CrossRefGoogle Scholar
Larkin, A. I., and Ovchinnikov, Yu. N. 1979. Pinning in type II superconductors. J. Low Temp. Phys., 34, 409–428.CrossRefGoogle Scholar
Laurie, J., L'vov, V. S., Nazarenko, S., and Rudenko, O. 2010. Interaction of Kelvin waves and nonlocality of energy transfer in superfluids. Phys. Rev B, 81, 104526.CrossRefGoogle Scholar
Lebedev, V. V., and L'vov, V. S. 2010. Symmetries and interaction coefficients of Kelvin waves. J. Low Temp. Phys., 161, 548–554.CrossRefGoogle Scholar
Lebedev, V. V., L'vov, V. S., and Nazarenko, S. V. 2010. Reply: on role of symmetries in Kelvin wave turbulence. J. Low Temp. Phys., 161, 606–610.CrossRefGoogle Scholar
Lederer, S., Huang, W., Taylor, E., Raghu, S., and Kallin, C. 2014. Suppression of spontaneous currents in Sr2RuO4 by surface disorder. Phys. Rev. B, 90, 134521.CrossRefGoogle Scholar
Leggett, A. J. 2006. Quantum Liquids. Bose Condensation and Cooper Pairing in Condensed-Matter Systems, Appendix 6A. Oxford University Press.CrossRefGoogle Scholar
Lifshitz, E. M., and Pitaevskii, L. P. 1957. Absorption of second sound in rotating helium II. Zh. Eksp. Teor. Fiz., 33, 535–537 [Sov. Phys.–JETP, 6, 418–419 (1958)].Google Scholar
Lindner, N., Auerbach, A., and Arovas, D. P. 2010. Vortex dynamics and Hall conductivity of hard-core bosons. Phys. Rev. B, 82, 134510.CrossRefGoogle Scholar
Liu, M., and Cross, M. C. 1979. Gauge wheel of superfluid 3He. Phys. Rev. Lett., 43, 296–299.CrossRefGoogle Scholar
Love, A. E. H. 1944. A Treatise of the Mathematical Theory of Elasticity. Dover.Google Scholar
L'vov, V. S., and Nazarenko, S. 2010. Spectrum of Kelvin-wave turbulence in superfluids. Pis'ma Zh. Eksp. Teor. Fiz., 91, 464–470 [JETP Lett., 91, 428–434 (2010)].Google Scholar
L'vov, V. S., and Nazarenko, S. V. 2012. Comment on ‘Symmetry of Kelvin-wave dynamics and the Kelvin-wave cascade in the T = 0 superfluid turbulence’. Phys. Rev. B, 86, 226501.Google Scholar
L'vov, V. S., Nazarenko, S. V., and Volovik, G. E. 2004. Energy spectra of developed superfluid turbulence. Pis'ma Zh. Eksp. Teor. Fiz., 80, 546–550 [JETP Lett., 80, 479–483 (2004)].Google Scholar
L'vov, V. S., Nazarenko, S. V., and Rudenko, O. 2007. Bottleneck crossover between classical and quantum superfluid turbulence. Phys. Rev. B, 76, 024520.Google Scholar
L'vov, V. S., Nazarenko, S. V., and Rudenko, O. 2008. Gradual eddy-wave crossover in superfluid turbulence. J. Low Temp. Phys., 153, 140.CrossRefGoogle Scholar
Machta, J., and Guyer, R. A. 1988. Superfluid films in porous media. Phys. Rev. Lett., 60, 2054–2057.CrossRefGoogle ScholarPubMed
Machta, J., and Guyer, R. A. 1989. Superfluid films on a cylindrical surface. J. Low Temp. Phys., 74, 231–261.CrossRefGoogle Scholar
Mackenzie, A. P., and Maeno, Y. 2003. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys., 75, 657–712.CrossRefGoogle Scholar
Madelung, E. 1927. Quantentheorie in hydrodynamischer Form. Z. Phys., 40, 322–326.CrossRefGoogle Scholar
Madison, K. W., Chevy, F., Wohlleben, W., and Dalibard, J. 2000. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett., 84, 806–809.CrossRefGoogle Scholar
Maki, K., and Zotos, X. 1985. Vortex-pair state in rotating superfluid 3He-A at low temperatures. Phys. Rev. B, 31, 177–182.CrossRefGoogle Scholar
Mamaladze, Yu. G. 1967. Parmeters of phenomenological superfluidity theory and the λ-point shift. Zh. Eksp. Teor. Fiz., 52, 729–731 [Sov. Phys.–JETP, 25, 479–480 (1967)].Google Scholar
Mamaladze, Yu. G., and Matinyan, S. G. 1960. Damping of oscillations of a disk in rotating helium II. Zh. Eksp. Teor. Fiz., 38, 184–187 [Sov. Phys.–JETP, 11, 134–136 (1960)].Google Scholar
Marakov, A., Gao, J., Guo, W., Van Sciver, S.W., Ihas, G. G., McKinsey, D. N., and Vinen, W. F. 2015. Visualization of the normal-fluid turbulence in counterflowing superfluid 4He. Phys. Rev. B, 91, 094503.CrossRefGoogle Scholar
Martin, P. C., Parodi, O., and Pershan, P. S. 1972. Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A, 6, 2401–2420.CrossRefGoogle Scholar
Matheiu, P., and Simon, Y. 1980. Hydrodynamic theory of mutual friction in He II. Phys. Rev. Lett., 45, 1428–1431.Google Scholar
Matheiu, P., Serra, A., and Simon, Y. 1976. Critical-region measurements of the mutualfriction parameters in rotating He II. Phys. Rev. B, 14, 3753–3761.Google Scholar
Matthews, M. R., Anderson, B. P., Haljan, P. C., Hall, D. S., Wieman, C. E., and Cornell, E. A. 1999. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett., 83, 2498–2501.CrossRefGoogle Scholar
Maurer, J., and Tabeling, P. 1998. Local investigation of superfluid turbulence. Europhys. Lett., 43, 29.CrossRefGoogle Scholar
Mermin, N. D., and Ho, T. L. 1976. Circulation and angular momentum in the A phase of superfluid helium-3. Phys. Rev. Lett., 36, 594–597.Google Scholar
Mermin, N. D., and Muzikar, P. 1980. Cooper pairs versus Bose condensed molecules: the ground-state current in superfluid 3He-A. Phys. Rev. B, 21, 980–989.CrossRefGoogle Scholar
Milne-Thompson, L. M. 1968. Theoretical Hydrodynamics. Macmillan.CrossRefGoogle Scholar
Minoguchi, T., and Nagaoka, Y. 1988. Vortices, superfluidity, and phase transition in 4He film adsorbed on porous materials. Prog. Theor. Phys., 80, 397–416.CrossRefGoogle Scholar
Misirpashaev, T. Sh., and Volovik, G. E. 1992. Macroscopic Josephson effect in superfluid 3He-B. Pis'ma Zh. Eksp. Teor. Fiz., 56, 40–43 [JETP Lett., 56, 41–44 (1992)].Google Scholar
Mizushima, T., Kawaguchi, Y., Machida, K., Ohmi, T., Isoshima, T., and Salomaa, M. M. 2004. Collective oscillations of vortex lattices in rotating Bose–Einstein condensates. Phys. Rev. Lett., 92, 060407.CrossRefGoogle ScholarPubMed
Morse, P. M., and Feshbach, H. 1953. Methods of Theoretical Physics, vol. II. McGraw-Hill.Google Scholar
Muirihead, C., Vinen, W. F., and Donnelly, R. J. 1984. The nucleation of vorticity by ions in superfluid 4He. I. Basic theory. Philos Trans. R. Soc. London Ser. A, 311, 433.CrossRefGoogle Scholar
Murphy, S. Q., and Reppy, J. D. 1990. Simultaneous measurement of the heat capacity and superfluid density of 4He films in vycor glass. Physica B, 165, 547–548.Google Scholar
Nazarenko, S. 2011. Wave Turbulence. Springer.CrossRefGoogle Scholar
Nazarenko, S., and West, R. 2003. Analytical solution for nonlinear Schrödinger vortex reconnection. J. Low Temp. Phys., 132, 1–10.CrossRefGoogle Scholar
Nelson, D. R., and Kosterlitz, J. M. 1977. Universal jump in the superfluid density of twodimensional superfluids. Phys. Rev. Lett., 39, 1201–1205.CrossRefGoogle Scholar
Nemirovskii, S. K. 2006. Evolution of a network of vortex loops in He-II: exact solution of the rate equation. Phys. Rev. Lett., 96, 015301.CrossRefGoogle ScholarPubMed
Nemirovskii, S. K. 2008. Kinetics of a network of vortex loops in He II and a theory of superfluid turbulence. Phys. Rev. B, 77, 214509.CrossRefGoogle Scholar
Nemirovskii, S. K. 2010. Diffusion of inhomogeneous vortex tangle and decay of superfluid turbulence. Phys. Rev B, 81, 064512.CrossRefGoogle Scholar
Nemirovskii, S. K. 2013. Quantum turbulence: theoretical and numerical problems. Phys. Rep., 524, 85–202.CrossRefGoogle Scholar
Nemirovskii, S. K., and Fiszdon, W. 1995. Chaotic quantized vortices and hydrodynamic processes in superfluid helium. Rev. Mod. Phys., 67, 37–84.CrossRefGoogle Scholar
Nemirovskii, S. K., and Sonin, E. B. 2007. Dynamics of coreless vortices and rotationinduced dissipation peak in superfluid films on rotating porous substrates. Phys. Rev. B, 76, 224507.CrossRefGoogle Scholar
Nemirovskii, S. K., Tsubota, M., and Araki, T. 2002. Energy spectrum of the random velocity field induced by a Gaussian vortex tangle in He II. J. Low Temp. Phys., 126, 1535–1540.CrossRefGoogle Scholar
Neshev, D., Nepomnyashchy, A., and Kivshar, Yu. 2001. Nonlinear Aharonov-Bohm scattering by optical vortices. Phys. Rev. Lett., 87, 043901.CrossRefGoogle ScholarPubMed
Nore, C., Abid, M., and Brachet, M. E. 1997. Kolmogorov turbulence in low-temperature superflows. Phys. Rev. Lett., 78, 3896.CrossRefGoogle Scholar
Noronha, J., and Sedarkian, A. 2008. Tkachenko modes as sources of quasiperiodic pulsar spin variations. Phys. Rev. D, 77, 023008.CrossRefGoogle Scholar
Obata, T., and Kubota, M. 2002. Calculation of the phase field of a vortex pair on the surface of a multiply connected substrate. Phys. Rev. B, 66, 140506.CrossRefGoogle Scholar
Ohmi, T. 1984. Vortex lattice structure of superfluid 3He-A in a magnetic field. J. Low Temp. Phys., 56, 183–194.CrossRefGoogle Scholar
Olariu, S., and Popescu, I. I. 1985. The quantum effects of electromagnetic fluxes. Rev. Mod. Phys., 57, 339–436.CrossRefGoogle Scholar
Onsager, L. 1949. In discussion on paper by C. J. Gorter. Nuovo Cimento Suppl., 6, 249–250. Reprinted in the book by Thouless (1998), pp. 177–178.Google Scholar
Onuki, A. 1983. Mutual friction and vortex motion near the superfluid transition. J. Low Temp. Phys., 51, 601–632.CrossRefGoogle Scholar
Ostermeier, R. M., and Glaberson, W. I. 1975. Instability of vortex lines in the presence of axial normal fluid flow. J. Low Temp. Phys., 21, 191–196.CrossRefGoogle Scholar
Paoletti, M. S., Fisher, M. E., and Lathrop, D. P. 2010. Reconnection dynamics for quantized vortices. Physica D, 239, 1367–1377.CrossRefGoogle Scholar
Paulson, D. N., Krusius, M., and Wheatley, J. 1976. Experiments on orbital dynamics in superfluid 3He-A. Phys. Rev. Lett., 36, 1322–1325.CrossRefGoogle Scholar
Peierls, R. 1979. Surprises in Theoretical Physics. Princeton University Press.Google Scholar
Pismen, L. M. 1999. Vortices in Nonlinear Fields. From Liquid Crystals to Superfluids. From Non-Equilibrium Patterns to Cosmic Strings. Oxford University Press.Google Scholar
Pitaevskii, L. P. 1958a. Calculation of the phonon part of the mutual friction force in superfluid helium. Zh. Eksp. Teor. Fiz., 35, 1271–1275 [Sov. Phys.–JETP, 8, 888–890 (1959)].Google Scholar
Pitaevskii, L. P. 1958b. Phenomenological theory of superfluidity near the λ point. Zh. Eksp. Teor. Fiz., 35, 408–415 [Sov. Phys.–JETP, 35, 282–287 (1959)].Google Scholar
Pitaevskii, L. P. 1961. Vortex lines in an imperfect Bose gas. Zh. Eksp. Teor. Fiz., 40, 646 [Sov. Phys.–JETP, 13, 451–454 (1961)].Google Scholar
Pitaevskii, L. P. 1977. Temperature dependence of the mutual friction force in helium near the λ point. Pis'ma Zh. Eksp. Teor. Fiz., 25, 168–171 [JETP Lett., 25, 154–156 (1977)].Google Scholar
Pitaevskii, L. P. 2006. Bose–Einstein condensates in a laser radiation field. Usp. Fiz. Nauk, 176, 345–364 [Sov. Phys.–Usp., 49, 333–351 (2006)].CrossRefGoogle Scholar
Pitaevskii, L., and Stringari, S. 2003. Bose–Einstein condensation. Oxford University Press.Google Scholar
Plaçais, B., Lütke-Entrup, N., Bellessa, J., Mathieu, P., Simon, Y., and Sonin, E. B. 2004. Peak effect and surface crystal-glass transition for surface-pinned vortex array. Europhys. Lett., 67, 655–661.CrossRefGoogle Scholar
Popov, S. B. 2008. Tkachenko waves, glitches and precession in neutron stars. Astrophys. Space Sci., 317, 175–179.CrossRefGoogle Scholar
Putterman, S. J. 1974. Superfluid Hydrodynamics. North-Holand.Google Scholar
Raja Gopal, E. S. 1964. Oscillations of quantized vortices in rotating liquid helium II. Ann. Phys. (N.Y.), 29, 350–365.CrossRefGoogle Scholar
Rayfield, G.W., and Reif, F. 1964. Quantized vortex rings in superfluid helium. Phys. Rev., 136, A1194–A1208.CrossRefGoogle Scholar
Reppy, J. D. 1992. Superfluid helium in porous media. J. Low Temp. Phys., 87, 205–245.CrossRefGoogle Scholar
Ricca, R. L. 1994. The effect of torsion on the motion of a helical vortex filament. J. Fluid Mech., 273, 241–259.CrossRefGoogle Scholar
Richardson, L. F. 1922. Weather Prediction by Numerical Processes. Cambridge University Press.Google Scholar
Roux, P., de Rosny, J., Tanter, M., and Fink, M. 1997. The Aharonov-Bohm effect revisited by an acoustic time-reversal mirror. Phys. Rev. Lett., 79, 3170–3173.CrossRefGoogle Scholar
Ruderman, M. 1970. Long period oscillations in rotating neutron stars. Nature (London), 225, 619–620.CrossRefGoogle ScholarPubMed
Ruutu, V. M., Ruohio, J. J., Krusius, M., Plaçais, B., Sonin, E. B., and Xu, W. 1997. Annihilation of vortex lines in rotating superfluid 3He. Phys. Rev. B, 56, 14089–14092.CrossRefGoogle Scholar
Saffman, P. G. 1995. Vortex Dynamics. Cambridge University Press.Google Scholar
Saint-James, D., Sarma, G., and Thomas, E. J. 1969. Type II Superconductivity. Pergamon Press.Google Scholar
Salman, H. 2013. Breathers on quantized superfluid vortices. Phys. Rev. Lett., 111, 165301.CrossRefGoogle ScholarPubMed
Salomaa, M. M., and Volovik, G. E. 1985. Quantized vortices in superfluid 3He. Rev. Mod. Phys., 59, 533–613. Erratum, 60, 573 (1988).Google Scholar
Salort, J., Chabaud, B., Lévêque, E., and Roche, P.-E. 2012. Energy cascade and the fourfifths law in superfluid turbulence. Europhys. Lett., 97, 34006.CrossRefGoogle Scholar
Sauls, J. A. 2011. Surface states, edge currents, and the angular momentum of chiral p-wave superfluids. Phys. Rev. B, 84, 214509.CrossRefGoogle Scholar
Schwarz, K. W. 1977. Theory of turbulence in superfluid 4He. Phys. Rev. Lett., 38, 551–554.CrossRefGoogle Scholar
Schwarz, K. W. 1978. Turbulence in superfluid helium: steady homogeneous counterflow. Phys. Rev. B, 18, 245–262.CrossRefGoogle Scholar
Schwarz, K. W. 1985. Three-dimensional vortex dynamics in superfluid 4He: line-line and line-boundary interactions. Phys. Rev. B, 31, 5782–5804.CrossRefGoogle ScholarPubMed
Schwarz, K.W. 1988. Three-dimensional vortex dynamics in superfluid 4He: homogeneous superfluid turbulence. Phys. Rev. B, 38, 2398–2417.CrossRefGoogle ScholarPubMed
Schwarz, K. W. 1993. Unwinding of a single quantized vortex from a wire. Phys. Rev. B, 47, 12030–12039.CrossRefGoogle Scholar
Schwarz, K. W., and Rozen, J. R. 1991. Transient behavior of superfluid turbulence in a large channel. Phys. Rev B, 44, 7563–7577.CrossRefGoogle Scholar
Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. P., and Cornell, E. A. 2004. Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level. Phys. Rev. Lett., 92, 040404.CrossRefGoogle ScholarPubMed
Seppälä, H. K., and Volovik, G. E. 1983. Evidence for nonsingular vorticity in the Helsinki experiments on rotating 3He-A. J. Low Temp. Phys., 51, 279–290.CrossRefGoogle Scholar
Shahabasyan, M. K. 2009. Vortex lattice oscillations in rotating neutron stars with quark ‘CFL’ cores. Astrophysics, 52, 151–155.CrossRefGoogle Scholar
Shapiro, K. A., and Rudnick, I. 1965. Experimental determination of the fourth sound velocity in helium II. Phys. Rev., 137, A1383–A1391.CrossRefGoogle Scholar
Sheehy, D. E., and Radzihovsky, L. 2004. Vortex lattice inhomogeneity in spatially inhomogeneous superfluids. Phys. Rev. A, 70, 051602(R).Google Scholar
Shelankov, A. L. 1998. Magnetic force exerted by the Aharonov–Bohm line. Europhys. Lett., 43, 623–628.CrossRefGoogle Scholar
Shelankov, A. L. 2002. Lorentz force exerted by the Aharonov–Bohm flux line. Pages 147—166 of: Huebener, R. P., Schopohl, N., and Volovik, G. E. (eds.), Vortices in Unconventional Superconductors and Superfluids. Springer-Verlag.Google Scholar
Simanek, E. 1983. Dynamics of quantum vortices in two-dimensional superconductors. Solid State Commun., 48, 1023–1025.CrossRefGoogle Scholar
Sinova, J., Hanna, C. B., and MacDonald, A. H. 2002. Quantum melting and absence of Bose–Einstein condensation in two-dimensional vortex matter. Phys. Rev. Lett., 89, 030403.CrossRefGoogle ScholarPubMed
Skrbek, L., and Vinen, W. F. 2009. The use of vibrating structures in the study of quantum turbulence. Pages 195–246 of: Halperin, B., and Tsubota, M. (eds.), Progress in Low Temperature Physics: Quantum Turbulence. Progress in Low Temperature Physics, vol. 16. Elsevier.CrossRefGoogle Scholar
Smith, M. R., Donnely, R. J., Goldenfeld, N., and Vinen, W. F. 1993. Decay of vorticity in homogeneous turbulence. Phys. Rev. Lett., 71, 2583–2586.CrossRefGoogle ScholarPubMed
Soininen, P., and Kopnin, N. B. 1994. Stability of superflow. Phys. Rev. B, 49, 12087– 12094.CrossRefGoogle ScholarPubMed
Sonin, E. B. 1973. Critical velocities at very low temperatures and the vortices in a quantum Bose fluid. Zh. Eksp. Teor. Fiz., 64, 970–983 [Sov. Phys.–JETP, 37, 494–500 (1973)].Google Scholar
Sonin, E. B. 1975. Friction between the normal component and vortices in rotating superfluid helium. Zh. Eksp. Teor. Fiz., 69, 921–935 [Sov. Phys.–JETP, 42, 469–475 (1976)].Google Scholar
Sonin, E. B. 1976. Vortex-lattice vibrations in a rotating helium II. Zh. Eksp. Teor. Fiz., 70, 1970 [Sov. Phys.–JETP, 43, 1027 (1976)].Google Scholar
Sonin, E. B. 1981. Mutual friction force in rotating He II at low temperatures and near the λ-point. J. Low Temp. Phys., 42, 417–432.CrossRefGoogle Scholar
Sonin, E. B. 1983. On low-frequency oscillations of vortices in rotating He II.Pis'ma Zh. Eksp. Teor. Fiz., 37, 82–84 [JETP Lett., 37, 100–103 (1983)].Google Scholar
Sonin, E. B. 1984. On hydrodynamics of an anisotropic superfluid. Zh. Eksp. Teor. Fiz., 87, 1670–1685 [Sov. Phys.–JETP, 60, 959–967 (1984)].Google Scholar
Sonin, E. B. 1986. Orbital angular momentum and friction force between vortices and the normal component in 3He-A. Pis'ma Zh. Eksp. Teor. Fiz., 43, 601–604 [JETP Lett., 43, 779–782 (1986)].Google Scholar
Sonin, E. B. 1987. Vortex oscillations and hydrodynamics of rotating superfluids. Rev. Mod. Phys., 59, 87–155.CrossRefGoogle Scholar
Sonin, E. B. 1992. What can we learn of vortex dynamics from 3He investigations. Physica B, 178, 106–120.CrossRefGoogle Scholar
Sonin, E. B. 1994. Dynamics of curved vortex lines in superfluids: precession of a partially trapped line. J. Low Temp. Phys., 97, 145–156.CrossRefGoogle Scholar
Sonin, E. B. 1995. Nucleation and creep of vortices in superfluids and clean superconductors. Physica B, 210, 234–250.CrossRefGoogle Scholar
Sonin, E. B. 1997. Magnus force in superfluids and superconductors. Phys. Rev. B, 55, 485.CrossRefGoogle Scholar
Sonin, E. B. 1998. Comment on ‘Berry's phase and the Magnus force for a vortex line in a superconductor,’ ‘Transverse force on a quantized vortex in a superfluid,’ and ‘Magnus and Iordanskii forces in superfluids’. Phys. Rev. Lett., 81, 4276–4276.CrossRefGoogle Scholar
Sonin, E. B. 2002. Magnus force and Aharonov–Bohm effect in superfluids. Pages 119–145 of: Huebener, R. P., Schopohl, N., and Volovik, G. E. (eds.), Vortices in Unconventional Superconductors and Superfluids. Springer-Verlag.Google Scholar
Sonin, E. B. 2005a. Continuum theory of Tkachenko modes in rotating Bose–Einstein condensate. Phys. Rev. A, 71, 011603(R).CrossRefGoogle Scholar
Sonin, E. B. 2005b. Ground state and Tkachenko modes of a rapidly rotating Bose–Einstein condensate in the lowest Landau level state. Phys. Rev. A, 72, 021606(R).CrossRefGoogle Scholar
Sonin, E. B. 2010. The Aharonov–Bohm effect in neutral liquids. J. Phys. A, 43, 354003.CrossRefGoogle Scholar
Sonin, E. B. 2012a. Dynamics of helical vortices and helical-vortex rings. Europhys. Lett., 97, 46002.CrossRefGoogle Scholar
Sonin, E. B. 2012b. Dynamics of twisted vortex bundles and laminar propagation of the vortex front. Phys. Rev. B, 85, 024515.CrossRefGoogle Scholar
Sonin, E. B. 2012c. Reply to Comment on ‘Symmetry of Kelvin-wave dynamics and the Kelvin-wave cascade in the T = 0 superfluid turbulence’. Phys. Rev. B, 86, 226502.CrossRefGoogle Scholar
Sonin, E. B. 2012d. Symmetry of Kelvin-wave dynamics and the Kelvin-wave cascade in the T = 0 superfluid turbulence. Phys. Rev. B, 85, 104516.CrossRefGoogle Scholar
Sonin, E. B. 2013a. Tkachenko waves. Pis'ma Zh. Eksp. Teor. Fiz., 98, 853–863 [JETP Lett., 98, 758–768 (2014)].Google Scholar
Sonin, E. B. 2013b. Transverse force on a vortex and vortex mass: effects of free bulk and vortex-core bound quasiparticles. Phys. Rev. B, 87, 134515.CrossRefGoogle Scholar
Sonin, E. B. 2013c. Transverse forces on a vortex in lattice models of superfluids. Phys. Rev. B, 88, 214513.CrossRefGoogle Scholar
Sonin, E. B., and Fomin, N. V. 1985. Symmetry of vortex structures, axial currents, and Kelvin waves in superfluid 3He. Pis'ma Zh. Eksp. Teor. Fiz., 42, 185–187 [JETP Lett., 42, 229–232 (1985)].Google Scholar
Sonin, E. B., and Horovitz, B. 1995. Thermal and quantum creep of vortices trapped by twin boundaries and columnar defects. Phys. Rev. B, 51, 6526–6530.CrossRefGoogle ScholarPubMed
Sonin, E. B., and Krusius, M. 1994. Vortex dynamics in superfluids and superconductors. Pages 193–230 of: Bontempts, N., Bruynseraede, Y., Deutscher, G., and Kapitulnik, A. (eds.), The Vortex State. Proceedings of the NATO Advanced Study Institute on Vortices in Superfluids (Cargese, Corsica, 1993). Kluwer Academic Press.Google Scholar
Sonin, E. B., and Nemirovskii, S. K. 2011. Equilibrium rotation of a vortex bundle terminating on a lateral wall. Phys. Rev. B, 84, 054506.CrossRefGoogle Scholar
Sonin, E. B., Kondo, Y., Krusius, M., and Korhonen, J. S. 1993. Slow mode and pinning in a vortex array of rotating 3He-B. Europhys. Lett., 22, 125–131.CrossRefGoogle Scholar
Sonin, E. B., Geshkenbein, V. B., van Otterlo, A., and Blatter, G. 1998. Vortex motion in charged and neutral superfluids: a hydrodynamic approach. Phys. Rev. B, 57, 575–581.CrossRefGoogle Scholar
Stalp, S. R., Skrbek, L., and Donnelly, R. J. 1999. Decay of grid turbulence in a finite channel. Phys. Rev. Lett., 82, 4831–4834.CrossRefGoogle Scholar
Stauffer, D. 1967. Mutual friction and the stability of vortex lattices. Phys. Lett. A, 24, 72.CrossRefGoogle Scholar
Stauffer, D., and Fetter, A. L. 1968. Distribution of vortices in rotating helium II. Phys. Rev., 168, 156–159.CrossRefGoogle Scholar
Stone, M. 1996. Spectral flow, Magnus force, and mutual friction via the geometric optics limit of Andreev reflection. Phys. Rev. B, 54, 13222–13229.CrossRefGoogle ScholarPubMed
Stone, M. 2000. Acoustic energy and momentum in a moving medium. Phys. Rev. E, 62, 1341–1350.CrossRefGoogle Scholar
Suhl, H. 1965. Inertial mass of a moving fluxoid. Phys. Rev. Lett., 14, 226–229.CrossRefGoogle Scholar
Suramlishvili, N., Baggaley, A.W., Barenghi, C. F., and Sergeev, Y. A. 2012. Cross-sections of Andreev scattering by quantized vortex rings in 3He-B. Phys. Rev. B, 85, 174526.CrossRefGoogle Scholar
Svidzinsky, A., and Fetter, A. 2000. Dynamics of a vortex in a trapped Bose–Einstein condensate. Phys. Rev. A, 62, 063617.CrossRefGoogle Scholar
Svistunov, B. V. 1995. Superfluid turbulence in the low-temperature limit. Phys. Rev. B, 52, 3647–3653.CrossRefGoogle ScholarPubMed
Svistunov, B., Babaev, E., and Prokof'ev, N. 2015. Superfluid States of Matter. Taylor & Francis.CrossRefGoogle Scholar
Swanson, C. E., Barenghi, C. F., and Donnelly, R. J. 1983. Rotation of a tangle of quantized vortex lines in He II. Phys. Rev. Lett., 50, 190–193.CrossRefGoogle Scholar
Tada, Y., Nie, W., and Oshikawa, M. 2015. Orbital angular momentum and spectral flow in two-dimernsional superfluids. Phys. Rev. Lett., 114, 195301.CrossRefGoogle ScholarPubMed
Thompson, W. 1880. Vibrations of a columnar vortex. Philos. Mag., 10, 155–168.Google Scholar
Thouless, D. J. 1998. Topological Quantum Numbers in Nonrelativistic Physics. World Scientific.CrossRefGoogle Scholar
Thouless, D. J., Ao, P., and Niu, Q. 1996. Transverse force on a quantized vortex in a superfluid. Phys. Rev. Lett., 76, 3758–3761.CrossRefGoogle Scholar
Thouless, D. J., Geller, M. R., Vinen, W. F., Fortin, J.-Y., and Rhee, S. W. 2001. Vortex dynamics in the two-fluid model. Phys. Rev. B, 63, 224504.CrossRefGoogle Scholar
Tinkham, M. 1975. Introduction to Superconductivity. McGraw-Hill.Google Scholar
Tisza, L. 1940. Sur la théorie des liquides quantiques. Application a l'hélium liquide. J. Phys. Radium, 1, 164–172.Google Scholar
Tkachenko, V. K. 1965. On vortex lattices. Zh. Eksp. Teor. Fiz., 49, 1875–1883 [Sov. Phys.– JETP, 22, 1282–1286 (1966)].Google Scholar
Tkachenko, V. K. 1966. Stability of vortex lattices. Zh. Eksp. Teor. Fiz., 50, 1573–1585 [Sov. Phys.–JETP, 23, 1049–1056 (1966)].Google Scholar
Tkachenko, V. K. 1969. Elasticity of vortex lattices. Zh. Eksp. Teor. Fiz., 56, 1763–1765 [Sov. Phys.–JETP, 29, 945–946 (1969)].Google Scholar
Tkachenko, V. K. 1974. Properties of rotating helium. Zh. Eksp. Teor. Fiz., 67, 1984–1988 [Sov. Phys.–JETP, 40, 985–987 (1975)].Google Scholar
Tough, J. T. 1982. Superfluid turbulence. Page 133 of: Brewer, D. F. (ed.), Progress in Low Temperature Physics, vol. 8. North-Holand.Google Scholar
Tsakadze, J. S. 1964. Attempt to detect an irrotational region in rotating He II. Zh. Eksp. Teor. Fiz., 46, 505–507 [Sov. Phys.–JETP, 19, 343–344 (1964)].Google Scholar
Tsakadze, J. S., and Chkheidze, I. M. 1960. Measurement of the logarithmic damping decrement of a hollow cylinder in rotating helium II. Zh. Eksp. Teor. Fiz., 38, 637– 638 [Sov. Phys.–JETP, 11, 457–458 (1960)].Google Scholar
Tsakadze, J. S., and Tsakadze, S. J. 1973. Velocity oscillations of a freely rotating vessel with helium II. Pis'ma Zh. Eksp. Teor. Fiz., 18, 605–608 [JETP Lett., 18, 355–357 (1973)].Google Scholar
Tsakadze, J. S., and Tsakadze, S. J. 1975. Superfluidity in pulsars. Usp. Fiz. Nauk, 115, 503–519 [Sov. Phys.–Usp., 18, 242–250 (1975)].CrossRefGoogle Scholar
Tsakadze, J. S., Tsakadze, S. J., and Sonin, E. B. 1980. Comment on ‘Continuum model of vortex oscillations in rotating superfluids’. Phys. Rev. B, 21, 3028–3029.CrossRefGoogle Scholar
Tsakadze, S. J. 1976. Oscillations of a vortex system in rotating He II. Zh. Eksp. Teor. Fiz., 71, 754–759. [Sov. Phys.–JETP, 44, 398–400 (1976)].Google Scholar
Tsakadze, S. J. 1978. Collective oscillations of the vortex lattice in He II. Fiz. Nizk. Temp., 4, 148–151 [Sov. J. Low Temp. Phys., 4, 72–74 (1978)].Google Scholar
Tsubota, M., Araki, T., and Vinen, W. F. 2003. Diffusion of an inhomogeneous vortex tangle. Physica B, 329–333, 224–225.Google Scholar
Tsubota, M., Kobayashi, M., and Takeuchi, H. 2013. Quantum hydrodynamics. Phys. Rep., 522, 191–238.CrossRefGoogle Scholar
Ueda, M. 2010. Fundamentals and New Frontiers of Bose–Einstein Condensation. World Scientific.CrossRefGoogle Scholar
van der Zant, H. S. J., Fritschy, F. C., Orlando, T. P., and Mooij, J. E. 1992. Ballistic vortices in Josephson-junction arrays. Europhys. Lett., 18, 343–348.Google Scholar
Van Sciver, S. W., and Barenghi, C. F. 2009. Visualisation of quantum turbulence. Pages 247–303 of: Halperin, B., and Tsubota, M. (eds.), Progress in Low Temperature Physics: Quantum Turbulence. Progress in Low Temperature Physics, vol. 16. Elsevier.CrossRefGoogle Scholar
Van Vijfeijken, A. G., Walraven, A., and Staas, F. A. 1969. Energy and stability of vortex rings in liquid helium II; critical velocities. Physica, 44, 415–436.CrossRefGoogle Scholar
Varoquaux, E. 2015. Anderson's considerations on the flow of superfluid helim: some offshoots. Rev. Mod. Phys., 87, 803–854.CrossRefGoogle Scholar
Vinen, W. F. 1957a. Mutual friction in a heat current in liquid helium II. I. Experiments on steady heat currents. Proc. R. Soc. London Ser. A, 240, 114–127.Google Scholar
Vinen, W. F. 1957b. Mutual friction in a heat current in liquid helium II. II. Experiments on transient effects. Proc. R. Soc. London Ser. A, 240, 128–143.Google Scholar
Vinen, W. F. 1957c. Mutual friction in a heat current in liquid helium II. III. Theory of the mutual friction. Proc. R. Soc. London Ser. A, 242, 493–515.CrossRefGoogle Scholar
Vinen, W. F. 1961a. The detection of single quanta of circulation in liquid helium II. Proc. R. Soc. London Ser. A, 260, 218–236.CrossRefGoogle Scholar
Vinen, W. F. 1961b. Vortex lines in liquid helium II. Pages 1–57 of: Gorter, C. J. (ed.), Progress in Low Temperature Physics, vol. 3. North-Holand.Google Scholar
Vinen, W. F. 2000. Classical character of turbulence in a quantum liquid. Phys. Rev. B, 61, 1410–1420.CrossRefGoogle Scholar
Vinen, W. F. 2001. Decay of superfluid turbulence at a very low temperature: the radiation of sound from a Kelvin wave on a quantized vortex. Phys. Rev. B, 64, 134520.CrossRefGoogle Scholar
Vinen, W. F. 2005. Theory of quantum grid turbulence in superfluid 3He-B. Phys. Rev. B, 71, 024513.CrossRefGoogle Scholar
Vinen, W. F. 2010. Quantum turbulence: achievements and challenges. J. Low Temp. Phys., 161, 419–444.CrossRefGoogle Scholar
Vinen, W. F. 2014. Quantum turbulence: aspects of visualization and homogeneous turbulence. J. Low Temp. Phys., 175, 305–316.CrossRefGoogle Scholar
Vinen, W. F., and Niemela, J. J. 2002. Quantum turbulence. J. Low Temp. Phys., 128, 167–231.CrossRefGoogle Scholar
Vinen, W. F., and Skrbek, L. 2014. Quantum turbulence generated by oscillating structures. PNAS, 111(suppl.1), 4699–4706.CrossRefGoogle ScholarPubMed
Vinen, W. F., Tsubota, M., and Mitani, A. 2003. Kelvin-wave cascade on a vortex in superfluid 4He at a very low temperature. Phys. Rev. Lett., 91, 135301.CrossRefGoogle Scholar
Vollhardt, D., and Wölfle, P. 1990. The Superfluid Phases of Helium 3. Taylor & Francis.Google Scholar
Volovik, G. E. 1972. Quantum-mechanical formation of vortices in a superfluid liquid. Pis'ma Zh. Eksp. Teor. Fiz., 15, 116–120 [JETP Lett., 15, 81–83 (1972)].Google Scholar
Volovik, G. E. 1975. Orbital momentum and orbital waves in the anisotropic A-phase of superfluid 3He. Pis'ma Zh. Eksp. Teor. Fiz., 22, 234–237 [JETP Lett., 22, 108–110 (1975)].Google Scholar
Volovik, G. E. 1984. Superfluid properties of 3He-A. Usp. Fiz. Nauk, 143, 73–109 [Sov. Phys.–Usp., 27, 363–384 (1984)].CrossRefGoogle Scholar
Volovik, G. E. 1993. Vortex motion in Fermi superfluids and Callan–Harvey effect. Pis'ma Zh. Eksp. Teor. Fiz., 57, 233–237 [JETP Lett., 57, 244 (1993)].Google Scholar
Volovik, G. E. 2003a. Classical and quantum regimes of the superfluid turbulence. Pis'ma Zh. Eksp. Teor. Fiz., 78, 1021–1025 [JETP Lett., 78, 533–537 (2003)].Google Scholar
Volovik, G. E. 2003b. The Universe in a Helium Droplet. Oxford University Press.Google Scholar
Volovik, G. E. 2014. Orbital momentum of chiral superfluids and spectral asymmetry of edge states. Pis'ma Zh. Eksp. Teor. Fiz., 100, 843–846 [JETP Lett., 100, 742–745 (2014)].Google Scholar
Volovik, G. E., and Dotsenko, V. S. 1980. Hydrodynamics of defects in condensed media, using as examples vortices in rotating He II and disclinations in a planar magnet. Zh. Eksp. Teor. Fiz., 78, 132–148 [Sov. Phys.–JETP, 51, 65–73 (1980)].Google Scholar
Volovik, G. E., and Kopnin, N. B. 1977. Rotating 3He-A. Pis'ma Zh. Eksp. Teor. Fiz., 25, 26–28 [JETP Lett., 25, 22–24 (1977)].Google Scholar
Volovik, G. E., and Mineev, V. P. 1981. 3He-A vs Bose liquid: orbital angular momentum and orbital dynamics. Zh. Eksp. Teor. Fiz., 81, 989–1000 [Sov. Phys.–JETP, 54, 524– 530 (1980)].Google Scholar
Walmsley, P. M., and Golov, A. I. 2008. Quantum and quasiclassical types of superfluid turbulence. Phys. Rev. Lett., 100, 245301.CrossRefGoogle ScholarPubMed
Walmsley, P. M., and Golov, A. I. 2012a. Chirality of superfluid 3He-A. Phys. Rev. Lett., 109, 215301.CrossRefGoogle Scholar
Walmsley, P. M., and Golov, A. I. 2012b. Rotating quantum turbulence in superfluid 4He in the T = 0 limit. Phys. Rev. B, 86, 060518.CrossRefGoogle Scholar
Walmsley, P. M., Golov, A. I., Hall, H. E., Levchenko, A. A., and Vinen, W. F. 2007. Dissipation of quantum turbulence in the zero temperature limit. Phys. Rev. Lett., 99, 265302.CrossRefGoogle ScholarPubMed
Walmsley, P., Zmeev, D., Pakpour, F., and Golov, A. 2014. Dynamics of quantum turbulence of different spectra. PNAS, 111(suppl.1), 4691–4698.CrossRefGoogle ScholarPubMed
Watanabe, G., Baym, G., and Pethick, C. J. 2004. Landau levels and the Thomas–Fermi structure of rapidly rotating Bose–Einstein condensates. Phys. Rev. Lett., 93, 190401.CrossRefGoogle ScholarPubMed
Wexler, C., Thouless, D. J., Ao, P., and Niu, Q. 1998a. Wexler et al. reply. Phys. Rev. Lett., 80, 4357–4357.CrossRefGoogle Scholar
Wexler, C., Thouless, D. J., Ao, P., and Niu, Q. 1998b. Wexler et al. reply. Phys. Rev. Lett., 81, 4277–4277.CrossRefGoogle Scholar
White, A. C., Anderson, B. P., and Bagnato, V. 2014. Vortex filament method as a tool for computational visualization of quantum turbulence. PNAS, 111(suppl.1), 4719–4726.Google Scholar
Williams, M. R., and Fetter, A. L. 1977. Continuum model of vortex oscillations in rotating superfluids. Phys. Rev. B, 16, 4846–4852.CrossRefGoogle Scholar
Yarmchuk, E. J., and Glaberson, W. I. 1978. Thermorotation effects in superfluid helium. Phys. Rev. Lett., 41, 564–568.CrossRefGoogle Scholar
Yarmchuk, E. J., and Glaberson, W. I. 1979. Counterflow in rotating superfluid helium. J. Low Temp. Phys., 36, 381–430.CrossRefGoogle Scholar
Yarmchuk, E. J., Gordon, M. J. V., and Packard, R. E. 1979. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett., 43, 214–217.CrossRefGoogle Scholar
Zieve, R., Mukharsky, Yu.M., Close, J. D., Davis, J. C., and Packard, R. E. 1992. Precession of a single vortex line in superfluid 3He-B. Phys. Rev. Lett., 68, 1327–1330.CrossRefGoogle ScholarPubMed
Zmeev, D. E., Walmsley, P. M., Golov, A. I., McClintock, P. V. E., Fisher, S. N., and Vinen, W. F. 2015. Dissipation of quasiclassical turbulence in superfluid 4He. Phys. Rev. Lett., 115, 155303.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edouard B. Sonin, Hebrew University of Jerusalem
  • Book: Dynamics of Quantised Vortices in Superfluids
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047616.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edouard B. Sonin, Hebrew University of Jerusalem
  • Book: Dynamics of Quantised Vortices in Superfluids
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047616.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edouard B. Sonin, Hebrew University of Jerusalem
  • Book: Dynamics of Quantised Vortices in Superfluids
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047616.016
Available formats
×