Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-21T00:14:29.362Z Has data issue: false hasContentIssue false

4 - Implantation

Published online by Cambridge University Press:  16 February 2017

Roy G. Farquharson
Affiliation:
Liverpool Women's Hospital
Mary D. Stephenson
Affiliation:
University of Illinois College of Medicine
Get access
Type
Chapter
Information
Early Pregnancy , pp. 27 - 42
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, KY, DeMayo, FJ. Animal models of implantation. Reproduction 2004; 128(6):679–95.CrossRefGoogle ScholarPubMed
Hertig, AT, Rock, J, Adams, EC. A description of 34 human ova within the first 17 days of development. Am J Anat 1956; 98:435–93.CrossRefGoogle ScholarPubMed
Hertig, AT. A fifteen-year search for first-stage human ova. JAMA 1989; 261(3):434–35.CrossRefGoogle ScholarPubMed
Norwitz, ER, Schust, DJ, Fisher, SJ. Implantation and the survival of early pregnancy. N Engl J Med 2001; 345(19):1400–08.CrossRefGoogle ScholarPubMed
Braude, P, Bolton, V, Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 1988; 332:459–61.CrossRefGoogle ScholarPubMed
Tesarik, J, Kopecny, V, Plachot, M, Mandelbaum, J. High-resolution autoradiographie localisation of DNA-containing sites and RNA synthesis in developing nucleole of human preimplantation embryos: a new concept of embryonic nucleologenesis. Development 1987; 101:777–91.CrossRefGoogle Scholar
Taylor, DM, Ray, PF, Ao, A, Winston, RM, Handyside, AH. Paternal transcripts for glucose-6-phosphate dehydrogenase and adenosine deaminase are first detectable in the human preimplantation embryo at the three- to four-cell stage. Mol Report Dev 1997; 48:442–48.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Psychoyos, A, Nikas, G, Gravanis, A. The role of prostaglandins in blastocyst implantation. Hum Reprod 1995; 10(2):S3042.CrossRefGoogle ScholarPubMed
Bentin-Ley, U Relevance of endometrial pinopodes for human blastocyst implantation. Hum Reprod 2000; 15(6):S6773.Google ScholarPubMed
Lopata, A, Bentin-Ley, U, Enders, A. Pinopodes and implantation. Rev Endocr Metab Disord 2002; 3(2):7786.Google Scholar
Li, Y, Sun, X, Dey, SK. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Rep 2015; 11(3):358–65.CrossRefGoogle ScholarPubMed
Carbillon, L, Challier, JC, Alouini, S, Uzan, M, Uzan, S. Uteroplacental circulation development: Doppler assessment and clinical importance. Placenta 2001; 22(10):795–99.Google Scholar
Red-Horse, K, Zhou, Y, Genbacev, O, Prakobphol, A, Foulk, R, McMaster, M, et al. Trophoblast differentiation during embryo implantation and formation of the maternal–fetal interface. J Clin Invest 2004; 114(6):744–54.CrossRefGoogle ScholarPubMed
Dey, SK, Lim, H, Das, SK, Reese, J, Paria, BC, Daikoku, T, et al. Molecular cues to implantation. Endocr Rev 2004; 25(3):341–73.CrossRefGoogle ScholarPubMed
Lee, KY, Jeong, JW, Tsai, SY, Lydon, JP, DeMayo, FJ. Mouse models of implantation. Trends Endocrinol Metab 2007; 18(6):234–39.CrossRefGoogle ScholarPubMed
Carpenter, KD, Korach, KS. Potential biological functions emerging from the different estrogen receptors. Ann N Y Acad Sci 2006; 1092:361–73.CrossRefGoogle ScholarPubMed
Kastner, P, Krust, A, Turcotte, B, Stropp, U, Tora, L, Gronemeyer, H, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. Embo J 1990; 9(5):1603–14.CrossRefGoogle ScholarPubMed
Lessey, BA, Killam, AP, Metzger, DA, Haney, AF, Greene, GL, McCarty, KS, Jr. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab 1988; 67(2):334–40.CrossRefGoogle ScholarPubMed
Hewitt, SC, Korach, KS. Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues. Reproduction 2003; 125(2):143–49.CrossRefGoogle ScholarPubMed
Curtis, SW, Clark, J, Myers, P, Korach, KS. Disruption of estrogen signaling does not prevent progesterone action in the estrogen receptor alpha knockout mouse uterus. Proc Natl Acad Sci U S A 1999; 96(7):3646–51.CrossRefGoogle Scholar
Krege, JH, Hodgin, JB, Couse, JF, Enmark, E, Warner, M, Mahler, JF, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A 1998; 95(26):15677–82.CrossRefGoogle ScholarPubMed
Shapiro, BS, Daneshmand, ST, Garner, FC, Aguirre, M, Hudson, C, Thomas, S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril 2011; 96:344–48.Google ScholarPubMed
Lydon, JP, DeMayo, FJ, Funk, CR, Mani, SK, Hughes, AR, Montgomery, CA, Jr., et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995; 9(18):2266–78.CrossRefGoogle ScholarPubMed
Mulac-Jericevic, B, Mullinax, RA, DeMayo, FJ, Lydon, JP, Conneely, OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 2000; 289(5485):1751–54.CrossRefGoogle ScholarPubMed
Lessey, BA. The use of integrins for the assessment of uterine receptivity. Fertil Steril 1994; 61(5):812–14.CrossRefGoogle ScholarPubMed
Lessey, BA, Young, SL. Integrins and other cell adhesion molecules in endometrium and endometriosis. Semin Reprod Endocrinol 1997; 15(3):291–99.CrossRefGoogle ScholarPubMed
Aplin, JD, Spanswick, C, Behzad, F, Kimber, SJ, Vicovac, L. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium. Mol Hum Reprod 1996; 2(7):527–34.Google ScholarPubMed
Lessey, BA, Castelbaum, AJ, Sawin, SW, Buck, CA, Schinnar, R, Bilker, W, et al. Aberrant integrin expression in the endometrium of women with endometriosis. J Clin Endocrinol Metab 1994; 79(2):643–49.Google ScholarPubMed
Lessey, BA, Castelbaum, AJ, Sawin, SW, Sun, J. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril 1995; 63(3):535–42.CrossRefGoogle ScholarPubMed
Meyer, WR, Castelbaum, AJ, Somkuti, S, Sagoskin, AW, Doyle, M, Harris, JE, et al. Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod 1997; 12(7):1393–98.CrossRefGoogle ScholarPubMed
Aplin, JD. Adhesion molecules in implantation. Rev Reprod 1997; 2(2):8493.CrossRefGoogle ScholarPubMed
Illera, MJ, Cullinan, E, Gui, Y, Yuan, L, Beyler, SA, Lessey, BA. Blockade of the alpha(v)beta(3) integrin adversely affects implantation in the mouse. Biol Reprod 2000; 62(5):1285–90.CrossRefGoogle Scholar
Hodivala-Dilke, KM, McHugh, KP, Tsakiris, DA, Rayburn, H, Crowley, D, Ullman-Cullere, M, et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103(2):229–38.Google Scholar
Damsky, CH, Librach, C, Lim, KH, Fitzgerald, ML, McMaster, MT, Janatpour, M, et al. Integrin switching regulates normal trophoblast invasion. Development 1994; 120(12):3657–66.CrossRefGoogle ScholarPubMed
Damsky, CH, Fisher, SJ. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol 1998; 10(5):660–66.CrossRefGoogle ScholarPubMed
Yarden, Y, Sliwkowski, MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2(2):127–37.CrossRefGoogle ScholarPubMed
Das, SK, Chakraborty, I, Paria, BC, Wang, XN, Plowman, G, Dey, SK. Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol 1995; 9(6):691705.Google ScholarPubMed
Das, SK, Wang, XN, Paria, BC, Damm, D, Abraham, JA, Klagsbrun, M, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 1994; 120(5):1071–83.CrossRefGoogle ScholarPubMed
Paria, BC, Elenius, K, Klagsbrun, M, Dey, SK. Heparin-binding EGF-like growth factor interacts with mouse blastocysts independently of ErbB1: a possible role for heparan sulfate proteoglycans and ErbB4 in blastocyst implantation. Development 1999; 126(9):19972005.CrossRefGoogle ScholarPubMed
Paria, BC, Das, SK, Andrews, GK, Dey, SK. Expression of the epidermal growth factor receptor gene is regulated in mouse blastocysts during delayed implantation. Proc Natl Acad Sci U S A 1993; 90(1):5559.CrossRefGoogle ScholarPubMed
Yoo, HJ, Barlow, DH, Mardon, HJ. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev Genet 1997; 21(1):102–08.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Chobotova, K, Spyropoulou, I, Carver, J, Manek, S, Heath, JK, Gullick, WJ, et al. Heparin-binding epidermal growth factor and its receptor ErbB4 mediate implantation of the human blastocyst. Mech Dev 2002; 119(2):137–44.CrossRefGoogle ScholarPubMed
Martin, KL, Barlow, DH, Sargent, IL. Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium. Hum Reprod 1998; 13(6):1645–52.Google Scholar
Lessey, BA, Gui, Y, Apparao, KB, Young, SL, Mulholland, J. Regulated expression of heparin-binding EGF-like growth factor (HB-EGF) in the human endometrium: a potential paracrine role during implantation. Mol Reprod Dev 2002; 62(4):446–55.CrossRefGoogle ScholarPubMed
Paria, BC, Ma, W, Tan, J, Raja, S, Das, SK, Dey, SK, et al. Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc Natl Acad Sci U S A 2001; 98(3):1047–52.CrossRefGoogle ScholarPubMed
Troyer, KL, Luetteke, NC, Saxon, ML, Qiu, TH, Xian, CJ, Lee, DC. Growth retardation, duodenal lesions, and aberrant ileum architecture in triple null mice lacking EGF, amphiregulin, and TGF-alpha. Gastroenterology 2001; 121(1):6878.Google Scholar
Han, VK, Bassett, N, Walton, J, Challis, JR. The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. J Clin Endocrinol Metab 1996; 81(7):2680–93.Google ScholarPubMed
Irwin, JC, Suen, LF, Martina, NA, Mark, SP, Giudice, LC. Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum Reprod 1999; 14(2):S90–6.CrossRefGoogle ScholarPubMed
Irving, JA, Lysiak, JJ, Graham, CH, Hearn, S, Han, VK, Lala, PK. Characteristics of trophoblast cells migrating from first trimester chorionic villus explants and propagated in culture. Placenta 1995; 16(5):413–33.CrossRefGoogle ScholarPubMed
Shifren, JL, Tseng, JF, Zaloudek, CJ, Ryan, IP, Meng, YG, Ferrara, N, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab 1996; 81(8):3112–18.Google ScholarPubMed
Chakraborty, I, Das, SK, Dey, SK. Differential expression of vascular endothelial growth factor and its receptor mRNAs in the mouse uterus around the time of implantation. J Endocrinol 1995; 147(2):339–52.CrossRefGoogle ScholarPubMed
Cullinan, EB, Abbondanzo, SJ, Anderson, PS, Pollard, JW, Lessey, BA, Stewart, CL. Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation. Proc Natl Acad Sci U S A 1996; 93(7):3115–20.CrossRefGoogle ScholarPubMed
Aghajanova, L, Hamilton, AE, Giudice, LC. Uterine receptivity to human embryonic implantation: histology, biomarkers, and transcriptomics. Sem Cell Dev Biol 2008; 19(2):204–11.Google Scholar
Stewart, CL, Kaspar, P, Brunet, LJ, Bhatt, H, Gadi, I, Kontgen, F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992; 359(6390):7679.Google Scholar
Ernst, M, Inglese, M, Waring, P, Campbell, IK, Bao, S, Clay, FJ, et al. Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J Exp Med 2001; 194(2):189203.CrossRefGoogle ScholarPubMed
Ware, CB, Horowitz, MC, Renshaw, BR, Hunt, JS, Liggitt, D, Koblar, SA, et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 1995; 121(5):1283–99.CrossRefGoogle ScholarPubMed
Chen, JR, Cheng, JG, Shatzer, T, Sewell, L, Hernandez, L, Stewart, CL. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 2000; 141(12):4365–72.CrossRefGoogle Scholar
Laird, SM, Tuckerman, EM, Dalton, CF, Dunphy, BC, Li, TC, Zhang, X. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum Reprod 1997; 12(3):569–74.CrossRefGoogle ScholarPubMed
Hambartsoumian, E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol 1998; 39(2):137–43.CrossRefGoogle ScholarPubMed
Danielsson, KG, Swahn, ML, Bygdeman, M. The effect of various doses of mifepristone on endometrial leukaemia inhibitory factor expression in the midluteal phase – an immunohistochemical study. Hum Reprod 1997; 12(6):1293–97.CrossRefGoogle ScholarPubMed
Huppertz, B, Kertschanska, S, Demir, AY, Frank, HG, Kaufmann, P. Immunohistochemistry of matrix metalloproteinases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta. Cell Tissue Res 1998; 291(1):133–48.Google ScholarPubMed
Librach, CL, Werb, Z, Fitzgerald, ML, Chiu, K, Corwin, NM, Esteves, RA, et al. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol 1991; 113(2):437–49.CrossRefGoogle ScholarPubMed
Bagot, CN, Kliman, HJ, Taylor, HS. Maternal Hoxa10 is required for pinopod formation in the development of mouse uterine receptivity to embryo implantation. Dev Dyn 2001; 222(3):538–44.Google Scholar
Schatz, F, Krikun, G, Runic, R, Wang, EY, Hausknecht, V, Lockwood, CJ. Implications of decidualization-associated protease expression in implantation and menstruation. Semin Reprod Endocrinol 1999; 17(1):312.CrossRefGoogle ScholarPubMed
McGinnis, W, Krumlauf, R. Homeobox genes and axial patterning. Cell 1992; 68(2):283302.CrossRefGoogle ScholarPubMed
Taylor, HS, Vanden Heuvel, GB, Igarashi, P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 1997; 57(6):1338–45.CrossRefGoogle ScholarPubMed
Satokata, I, Benson, G, Maas, R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature 1995; 374(6521):460–63.CrossRefGoogle ScholarPubMed
Benson, GV, Lim, H, Paria, BC, Satokata, I, Dey, SK, Maas, RL. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 1996; 122(9):2687–96.CrossRefGoogle ScholarPubMed
Hsieh-Li, HM, Witte, DP, Weinstein, M, Branford, W, Li, H, Small, K, et al. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 1995; 121(5):1373–85.CrossRefGoogle ScholarPubMed
Bagot, CN, Troy, PJ, Taylor, HS. Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation. Gene Ther 2000; 7(16):1378–84.CrossRefGoogle ScholarPubMed
Taylor, AH, Ang, C, Bell, SC, Konje, JC. The role of the endocannabinoid system in gametogenesis, implantation and early pregnancy. Hum Reprod Update 2007; 13(5):501–13.CrossRefGoogle ScholarPubMed
Taylor, HS, Arici, A, Olive, D, Igarashi, P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest 1998; 101(7):1379–84.CrossRefGoogle ScholarPubMed
Taylor, HS, Igarashi, P, Olive, DL, Arici, A. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocrinol Metab 1999; 84(3):1129–35.Google ScholarPubMed
Ma, L, Benson, GV, Lim, H, Dey, SK, Maas, RL. Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in the Mullerian duct by the synthetic estrogen diethylstilbestrol (DES). Dev Biol 1998; 197(2):141–54.CrossRefGoogle ScholarPubMed
Cermik, D, Selam, B, Taylor, HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2003; 88(1):238–43.CrossRefGoogle ScholarPubMed
Cermik, D, Arici, A, Taylor, HS. Coordinated regulation of HOX gene expression in myometrium and uterine leiomyoma. Fertil Steril 2002; 78(5):979–84.CrossRefGoogle ScholarPubMed
Daftary, GS, Taylor, HS. Hydrosalpinx fluid diminishes endometrial cell HOXA10 expression. Fertil Steril 2002; 78(3):577–80.CrossRefGoogle ScholarPubMed
Marions, L, Danielsson, KG. Expression of cyclo-oxygenase in human endometrium during the implantation period. Mol Hum Reprod 1999; 5(10):961–65.CrossRefGoogle ScholarPubMed
Lim, H, Gupta, RA, Ma, WG, Paria, BC, Moller, DE, Morrow, JD, et al. Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. Genes Dev 1999; 13(12):1561–74.CrossRefGoogle ScholarPubMed
Huang, JC, Liu, DY, Yadollahi, S, Wu, KK, Dawood, MY. Interleukin-1 beta induces cyclooxygenase-2 gene expression in cultured endometrial stromal cells. J Clin Endocrinol Metab 1998; 83(2):538–41.Google ScholarPubMed
Barak, Y, Nelson, MC, Ong, ES, Jones, YZ, Ruiz-Lozano, P, Chien, KR, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999; 4(4):585–95.CrossRefGoogle ScholarPubMed
Le Bouteiller, P, Legrand-Abravanel, F, Solier, C. Soluble HLA-G1 at the materno-fetal interface – a review. Placenta 2003;24:S1015.CrossRefGoogle ScholarPubMed
Allan, DS, Colonna, M, Lanier, LL, Churakova, TD, Abrams, JS, Ellis, SA, et al. Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomonocytic cells. J Exp Med 1999; 189(7):1149–56.CrossRefGoogle ScholarPubMed
King, A, Burrows, T, Verma, S, Hiby, S, Loke, YW. Human uterine lymphocytes. Hum Reprod Update 1998; 4(5):480–85.CrossRefGoogle ScholarPubMed
Deniz, G, Christmas, SE, Brew, R, Johnson, PM. Phenotypic and functional cellular differences between human CD3- decidual and peripheral blood leukocytes. J Immunol 1994; 152(9):4255–61.CrossRefGoogle ScholarPubMed
Drake, PM, Gunn, MD, Charo, IF, Tsou, CL, Zhou, Y, Huang, L, et al. Human placental cytotrophoblasts attract monocytes and CD56(bright) natural killer cells via the actions of monocyte inflammatory protein 1 alpha. J Exp Med 2001; 193(10):1199–212.CrossRefGoogle Scholar
Roth, I, Corry, DB, Locksley, RM, Abrams, JS, Litton, MJ, Fisher, SJ. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med 1996; 184(2):539–48.Google Scholar
Xu, C, Mao, D, Holers, VM, Palanca, B, Cheng, AM, Molina, H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 2000; 287(5452):498501.CrossRefGoogle ScholarPubMed
Munn, DH, Zhou, M, Attwood, JT, Bondarev, I, Conway, SJ, Marshall, B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281(5380):1191–93.CrossRefGoogle ScholarPubMed
Kamimura, S, Eguchi, K, Yonezawa, M, Sekiba, K. Localization and developmental change of indoleamine 2,3-dioxygenase activity in the human placenta. Acta Med Okayama 1991; 45(3):135–39.Google ScholarPubMed
Schrocksnadel, H, Baier-Bitterlich, G, Dapunt, O, Wachter, H, Fuchs, D. Decreased plasma tryptophan in pregnancy. Obstet Gynecol 1996; 88(1):4750.CrossRefGoogle ScholarPubMed
Norwitz, ER. Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod Biomed Online 2006; 13(4):591–99.CrossRefGoogle ScholarPubMed
Krebs, C, Macara, LM, Leizer, R, Bowman, AW, Greer, IA, Kingdom, JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 1996; 175(6):1534–42.CrossRefGoogle ScholarPubMed
Meekins, JW, Pijnenborg, R, Hanssens, M, McFadyen, IR, van Asshe, A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe preeclamptic pregnancies. Br J Obstet Gynaecol 1994; 101(8):669–74.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×