Skip to main content
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 29
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    González, Jonathan B. Petipas, Renee H. Franken, Oscar Kiers, E. Toby Veblen, Kari E. and Brody, Alison K. 2018. Herbivore removal reduces influence of arbuscular mycorrhizal fungi on plant growth and tolerance in an East African savanna. Oecologia, Vol. 187, Issue. 1, p. 123.

    Sharma, Esha Anand, Garima and Kapoor, Rupam 2017. Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Annals of Botany, p. mcw263.

    Soka, Geofrey and Ritchie, Mark 2014. Arbuscular mycorrhizal symbiosis and ecosystem processes: Prospects for future research in tropical soils. Open Journal of Ecology, Vol. 04, Issue. 01, p. 11.

    Whitaker, Melissa R. L. Katayama, Noboru and Ohgushi, Takayuki 2014. Plant–rhizobia interactions alter aphid honeydew composition. Arthropod-Plant Interactions, Vol. 8, Issue. 3, p. 213.

    Luoma, Daniel L. and Eberhart, Joyce L. 2014. Relationships between Swiss needle cast and ectomycorrhizal fungus diversity. Mycologia, Vol. 106, Issue. 4, p. 666.

    ROGER, AURÉLIEN GÉTAZ, MICHAEL RASMANN, SERGIO and SANDERS, IAN R. 2013. Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference. Ecological Entomology, Vol. 38, Issue. 4, p. 330.

    Vannette, Rachel L. Hunter, Mark D. and van der Heijden, Marcel 2013. Mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance. Journal of Ecology, Vol. 101, Issue. 4, p. 1019.

    MOON, DANIEL C. BARNOUTI, JWAN and YOUNGINGER, BRETT 2013. Context-dependent effects of mycorrhizae on herbivore density and parasitism in a tritrophic coastal study system. Ecological Entomology, Vol. 38, Issue. 1, p. 31.

    Bennett, Alison E. Macrae, Anna M. Moore, Ben D. Caul, Sandra Johnson, Scott N. and Zhang, Zhengguang 2013. Early Root Herbivory Impairs Arbuscular Mycorrhizal Fungal Colonization and Shifts Defence Allocation in Establishing Plantago lanceolata. PLoS ONE, Vol. 8, Issue. 6, p. e66053.

    Ueda, Koji Tawaraya, Keitaro Murayama, Hideki Sato, Satoru Nishizawa, Takashi Toyomasu, Tomonobu Murayama, Tetsuya Shiozawa, Shinpei and Yasuda, Hironori 2013. Effects of arbuscular mycorrhizal fungi on the abundance of foliar-feeding insects and their natural enemy. Applied Entomology and Zoology, Vol. 48, Issue. 1, p. 79.

    Vannette, Rachel L. Rasmann, Sergio and Allen, Edith 2012. Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study. Functional Ecology, Vol. 26, Issue. 5, p. 1033.

    LANDGRAF, RAMONA SCHAARSCHMIDT, SARA and HAUSE, BETTINA 2012. Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant, Cell & Environment, Vol. 35, Issue. 7, p. 1344.

    Lamit, Louis J. and Gehring, Catherine A. 2012. Biocomplexity of Plant-Fungal Interactions. p. 185.

    Jung, Sabine C. Martinez-Medina, Ainhoa Lopez-Raez, Juan A. and Pozo, Maria J. 2012. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology, Vol. 38, Issue. 6, p. 651.

    Kostenko, Olga van de Voorde, Tess F. J. Mulder, Patrick P. J. van der Putten, Wim H. Martijn Bezemer, T. and Knops, Johannes 2012. Legacy effects of aboveground-belowground interactions. Ecology Letters, Vol. 15, Issue. 8, p. 813.

    KATAYAMA, NOBORU ZHANG, ZHI QI and OHGUSHI, TAKAYUKI 2011. Community-wide effects of below-ground rhizobia on above-ground arthropods. Ecological Entomology, Vol. 36, Issue. 1, p. 43.

    HOFFMANN, DANIELA VIERHEILIG, HORST PENEDER, STEFAN and SCHAUSBERGER, PETER 2011. Mycorrhiza modulates aboveground tri-trophic interactions to the fitness benefit of its host plant. Ecological Entomology, Vol. 36, Issue. 5, p. 574.

    Rasmann, Sergio Bauerle, Taryn L. Poveda, Katja and Vannette, Rachel 2011. Predicting root defence against herbivores during succession. Functional Ecology, Vol. 25, Issue. 2, p. 368.

    Pestaña, Montserrat and Santolamazza-Carbone, Serena 2011. Defoliation negatively affects plant growth and the ectomycorrhizal community of Pinus pinaster in Spain. Oecologia, Vol. 165, Issue. 3, p. 723.

    Katayama, Noboru Nishida, Takaaki Zhang, Zhi Qi and Ohgushi, Takayuki 2010. Belowground microbial symbiont enhances plant susceptibility to a spider mite through change in soybean leaf quality. Population Ecology, Vol. 52, Issue. 4, p. 499.

  • Print publication year: 2007
  • Online publication date: August 2009

6 - Insect–mycorrhizal interactions: patterns, processes, and consequences



A wide variety of fungi form an intimate association with the roots of plants, and the word “mycorrhiza” is used to describe the overall structure formed by the union of these partners. There are seven different types of mycorrhiza, but the two that are most abundant in nature and of most importance ecologically, are the arbuscular and ectomycorrhiza. An excellent review of all aspects of mycorrhizal biology can be found in Smith and Read (1997). Arbuscular mycorrhizae are formed by about 150 different species of fungi within the Glomeromycota and are mostly associated with herbaceous plants. The fungus enters the roots of plants where hyphae grow intercellularly. In addition, unique highly branched structures are formed within the cells of plant roots, called arbuscules. These are thought to be sites of nutrient exchange. Arbuscular mycorrhizal (AM) fungi occur in all ecosystems of the world and associate with the roots of about 70% of all vascular plants (Hodge 2000). Ectomycorrhizal (ECM) fungi generally associate with woody plants. They are formed by about 5000 species of fungi, mainly from the Basidiomycotina, with some representatives from the Ascomycotina also. The fungus forms a sheath over the root tips and there is some intercellular, but no intracellular, growth of the hyphae. Ectomycorrhizae also have worldwide distributions, and although they associate with only about 3% of seed plants, their global importance is huge, as they associate with important timber and natural forest trees.

Essentially, arbuscular and ectomycorrhizae function in the same way.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Ecological Communities
  • Online ISBN: 9780511542701
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
Behmer, S. T., and Nes, W. D.. 2003. Insect sterol nutrition and physiology: a global overview. Advances in Insect Physiology 31:1–72.
Borowicz, V. A. 1997. A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542.
Borowicz, V. A. 2001. Do arbuscular mycorrhizal fungi alter plant–pathogen relations?Ecology 82:3057–3068.
Brown, V. K., and Gange, A. C.. 1990. Insect herbivory below ground. Advances in Ecological Research 20:1–58.
Brown, V. K., and A. C. Gange. 2002. Tritrophic below- and above-ground interactions in succession, pp. 197–222 in Tscharntke, T. and Hawkins, B. A. (eds.) Multitrophic Level Interactions. Cambridge, UK: Cambridge University Press.
Crawley, M. J. 1987. Benevolent herbivores?Trends in Ecology and Evolution 2:167–168.
Cullings, K. W., Vogler, D. R., Parker, V. T., and Makhija, S.. 2001. Defoliation effects on the ectomycorrhizal community of a mixed Pinus contorta/Picea engelmannii stand in Yellowstone Park. Oecologia 127:533–539.
Currie, A. F. 2004. Interactions between root-feeding insects and arbuscular mycorrhizal fungi. Ph.D. dissertation, University of London, UK.
Del Vecchio, T. A., Gehring, C. A., Cobb, N. S., and Whitham, T. G.. 1993. Negative effects of scale insect herbivory on the ectomycorrhizae of juvenile pinyon pine. Ecology 74:2297–2302.
Dixon, A. F. G. 1997. Aphid Ecology: An Optimization Approach. Glasgow, UK: Blackie.
Eom, A.-H., Wilson, G. W. T., and Hartnett, D. C.. 2001. Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93:233–242.
Fontaine, J., Grandmougin-Ferjani, A., Hartmann, M. A., and Sancholle, M.. 2001. Sterol biosynthesis by the arbuscular mycorrhizal fungus Glomus intraradices. Lipids 36:1357–1363.
Gange, A. C. 1996. Reduction in vine weevil larval growth by mycorrhizal fungi. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft 316:56–60.
Gange, A. C. 2000. Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends in Ecology and Evolution 15:369–372.
Gange, A. C. 2001. Species-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytologist 150:611–618.
Gange, A. C., and E. Bower. 1997. Interactions between insects and mycorrhizal fungi, pp. 115–132 in Gange, A. C. and Brown, V. K. (eds.) Multitrophic Interactions in Terrestrial Systems. Oxford, UK: Blackwell Science.
Gange, A. C., and V. K. Brown. 2002a. Actions and interactions of soil invertebrates in affecting the structure of plant communities, pp. 321–344 in Heijden, M. G. A. and Sanders, I. R. (eds.) Mycorrhizal Ecology. Berlin, Germany: Springer-Verlag.
Gange, A. C., and Brown, V. K.. 2002b. Soil food web components affect plant community structure during early succession. Ecological Research 17:217–222.
Gange, A. C., and Nice, H. E.. 1997. Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization. New Phytologist 137:335–343.
Gange, A. C., and West, H. M.. 1994. Interactions between arbuscular–mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist 128:79–87.
Gange, A. C., Brown, V. K., and Sinclair, G. S.. 1994. Reduction of black vine weevil growth by vesicular–arbuscular mycorrhizal fungi. Entomologia Experimentalis et Applicata 70:115–119.
Gange, A. C., Bower, E., and Brown, V. K.. 1999. Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120:123–131.
Gange, A. C., Bower, E., and Brown, V. K.. 2002a. Differential effects of insect herbivory on arbuscular mycorrhizal colonization. Oecologia 131:103–112.
Gange, A. C., Stagg, P. G., and Ward, L. K.. 2002b. Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecology Letters 5:11–15.
Gange, A. C., Brown, V. K., and Aplin, D. M.. 2003. Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecology Letters 6:1051–1055.
Gange, A. C., Gane, D. R. J., Chen, Y. L. and Gong, M. Q.. 2005. Dual colonization of Eucalyptus urophylla S. T. Blake by arbuscular and ectomycorrhizal fungi affects levels of insect herbivore attack. Agricultural and Forest Entomology 7:253–263.
Gehring, C. A., and Whitham, T. G.. 1991. Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature 353:556–557.
Gehring, C. A., and Whitham, T. G.. 1994. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends in Ecology and Evolution 9:251–255.
Gehring, C. A., and Whitham, T. G.. 1995. Duration of herbivore removal and environmental stress affect the ectomycorrhizae of pinyon pines. Ecology 76:2118–2123.
Gehring, C. A., and T. G. Whitham. 2002. Mycorrhizae–herbivore interactions: population and community consequences, pp. 295–320 in Heijden, M. G. A. and Sanders, I. R. (eds.) Mycorrhizal Ecology. Berlin, Germany: Springer-Verlag.
Gehring, C. A., Cobb, N. S., and Whitham, T. G.. 1997. Three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines. American Naturalist 149:824–841.
Goverde, M., Heijden, M. G. A., Wiemken, A., Sanders, I. R., and Erhardt, A.. 2000. Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369.
Halldorsson, G., Sverrisson, H., Eyjolfsdottir, G. G., and Oddsdottir, E. S.. 2000. Ectomycorrhizae reduce damage to Russian larch by Otiorhynchus larvae. Scandinavian Journal of Forest Research 15:354–358.
Hamilton, J. G., Zangerl, A. R., DeLucia, E. H., and Berenbaum, M. R.. 2001. The carbon-nutrient balance hypothesis: its rise and fall. Ecology Letters 4:86–95.
Hart, M., and Klironomos, J. N.. 2002. Diversity of arbuscular mycorrhizal fungi and ecosystem functioning, pp. 225–242 in Heijden, M. G. A. and Sanders, I. R. (eds.) Mycorrhizal Ecology. Berlin, Germany: Springer-Verlag.
Hause, B., Maier, W., Miersch, O., Kramell, R., and Strack, D.. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiology 130:1213–1220.
Helgason, T., Fitter, A. H., and Young, J. P. W.. 1999. Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Molecular Ecology 8:659–666.
Hodge, A. 2000. Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiology Ecology 32:91–96.
Holland, J. N., Weixin, C., and Crossley, D. A.. 1996. Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14. Oecologia 107:87–94.
Jones, C. G., and F. T. Last. 1991. Ectomycorrhizae and trees: implications for aboveground herbivory, pp. 65–103 in Barbosa, P., Krischik, V. A., and Jones, C. G. (eds.) Microbial Mediation of Plant–Herbivore Interactions. Chichester, UK: John Wiley.
Kolb, T. E., Dodds, K. A., and Clancy, K. M.. 1999. Effect of western spruce budworm defoliation on the physiology and growth of potted Douglas-fir seedlings. Forest Science 45:280–291.
Krishna, K. R., Suresh, H. M., Syamsunder, J., and Bagyaraj, D. J.. 1981. Changes in the leaves of finger millet due to VA mycorrhizal infection. New Phytologist 87:717–722.
Kuikka, K., Härma, E., Markkola, A., et al. 2003. Severe defoliation of Scots pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84:2051–2061.
Lodge, D. J. 2000. Ecto- or arbuscular mycorrhizae: which are best?New Phytologist 146:353–354.
Manninen, A.-M., Holopainen, T., and Holopainen, J. K.. 1998. Susceptibility of ectomycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris) seedlings to a generalist insect herbivore, Lygus rugulipennis at two nitrogen availability levels. New Phytologist 140:55–63.
Muller, J. 2003. Artificial infection by endophytes affects growth and mycorrhizal colonization of Lolium perenne. Functional Plant Biology 30:419–424.
Paul, N. D., Hatcher, P. E., and Taylor, J. E.. 2000. Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends in Plant Science 5:220–225.
Price, P. W. 1991. The plant vigor hypothesis and herbivore attack. Oikos 62:244–251.
Rabin, L. B., and Pacovsky, R. S.. 1985. Reduced larva growth of two lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. Journal of Economic Entomology 78:1358–1363.
Rhoades, D. F. 1979. Evolution of plant chemical defense against herbivores, pp. 3–54 in Rosenthal, G. A. and Janzen, D. H. (eds.) Herbivores: Their Interaction with Secondary Plant Metabolites. New York: Academic Press.
Rovira, A. D. 1969. Plant root exudates. Botanical Review 35:35–57.
Saikkonen, K., Faeth, S. H., Helander, M., and Sullivan, T. J.. 1998. Fungal endophytes: a continuum of interactions with host plants. Annual Review of Ecology and Systematics 29:319–343.
Saikkonen, K., Ahonen-Jonnarth, U., Markkola, A., et al. 1999. Defoliation and mycorrhizal symbiosis: a functional balance between carbon sources and below-ground sinks. Ecology Letters 2:19–26.
Scheu, S., Theenhaus, A., and Jones, T. H.. 1999. Links between the detrivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia 119:541–551.
Schoonhoven, L. M., Jermy, T., and Loon, J. J. A.. 1998. Insect–Plant Biology: From Physiology to Evolution. London: Chapman and Hall.
Smith, S. E., and Read, D. J.. 1997. Mycorrhizal Symbiosis. San Diego, CA: Academic Press.
Staddon, P. L., Fitter, A. H., and Robinson, D.. 1999. Effects of mycorrhizal colonization and elevated atmospheric carbon dioxide on carbon fixation and below-ground carbon partitioning in Plantago lanceolata. Journal of Experimental Botany 50:853–860.
Strack, D., Fester, T., Hause, B., Schliemann, W., and Walter, M. H.. 2003. Arbuscular mycorrhiza: biological, chemical, and molecular aspects. Journal of Chemical Ecology 29:1955–1979.
Thaler, J. S., Farag, M. A., Pare, P. W., and Dicke, M.. 2002. Jasmonate-deficient plants have reduced direct and indirect defences against insect herbivores. Ecology Letters 5:764–774.
Tjallingii, W. F., and Esch, T. H.. 1993. Fine-structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology 18:317–328.
Heijden, M. G. A., Boller, T., Wiemken, A., and Sanders, I. R.. 1998. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091.
Putten, W. H. 2003. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84:2269–2280.
Putten, W. H., Vet, L. E. M., Harvey, J. A., and Wäckers, F. L.. 2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology and Evolution 16:547–554.
Vicari, M., Hatcher, P. E., and Ayres, P. G.. 2002. Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 83:2452–2464.
Wamberg, C., Christensen, S., and Jakobsen, I.. 2003. Interaction between foliar-feeding insects, mycorrhizal fungi, and rhizosphere protozoa on pea plants. Pedobiologia 47:281–287.
White, T. C. R. 1984. The abundance of herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105.
Wurst, S., Dugassa-Gobena, D., Langel, R., Bonkowski, M., and Scheu, S.. 2004. Combined effects of earthworms and vesicular–arbuscular mycorrhizae on plant and aphid performance. New Phytologist 163:169–176.