Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-17T10:37:55.076Z Has data issue: false hasContentIssue false

7 - Broken symmetry states of metals

Published online by Cambridge University Press:  20 May 2010

Martin Dressel
Affiliation:
Universität Stuttgart
George Grüner
Affiliation:
University of California, Los Angeles
Get access

Summary

The role of electron–electron and electron–phonon interactions in renormalizing the Fermi-liquid state has been mentioned earlier. These interactions may also lead to a variety of so-called broken symmetry ground states, of which the superconducting ground state is the best known and most studied. The ground states are superpositions of electron–electron or electron–hole pairs all in the same quantum state with total momenta of zero or 2kF; these are the Cooper pairs for the superconducting case. There is an energy gap ∧, the well known BCS gap, introduced by Bardeen, Cooper, and Schrieffer [Bar57], which separates the ground state from the single-particle excitations. The states develop with decreasing temperature as the consequence of a second order phase transition.

After a short review of the various ground states, the collective modes and their response will be discussed. The order parameter is complex and can be written as ∧ exp{iφ}; the phase plays an important role in the electrodynamics of the ground state. Many aspects of the various broken symmetry states are common, but the distinct symmetries also lead to important differences in the optical properties. The absorption induced by an external probe will then be considered; it is usually discussed in terms of the so-called coherence effects, which played an important role in the early confirmation of the BCS theory. Although these effects are in general discussed in relation to the nuclear magnetic relaxation rate and ultrasonic attenuation, the electromagnetic absorption also reflects these coherence features, which are different for the various broken symmetry ground states.

Type
Chapter
Information
Electrodynamics of Solids
Optical Properties of Electrons in Matter
, pp. 173 - 204
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×