Skip to main content Accessibility help
×
  • Cited by 187
Publisher:
Cambridge University Press
Online publication date:
December 2009
Print publication year:
2005
Online ISBN:
9780511610561

Book description

Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.

Reviews

Review of the hardback:‘The subject is treated in a clear and logical fashion … Dr Reed has produced an excellent and thoroughly readable book … highly recommended for all those who use the electron microprobe.’

Allan Pring Source: Geological Magazine

Review of the hardback:‘A good introductory level of information on all the main aspects of scanning electron microscopy and microanalysis that is not so readily available anywhere else. The book is well illustrated and written in a clear and readable style … It is strongly recommended for new users and should have a place in every laboratory. It would make an excellent textbook for introductory courses.’

M. T. Styles Source: Analyst

Review of the hardback:‘This book is a valuable introduction to the use and geological application of scanning electron microscopes and electron microprobes … by far the most readable of the microscope/microprobe books that I have seen … It is pitched at the right level for the market at which it is aimed, postgraduate and postdoctoral workers, or geologists in industrial laboratories … It is a splendid book that should sit on the bookshelf of anybody working with electron microscopes and microprobes, be part of any laboratory and be required reading for any graduate student working with microbeam techniques.’

Peter Treloar Source: Geoscientist

Review of the hardback:‘ …this is a book that has been long overdue, and will certainly go to the top of my students’ reading list.’

Eric Condliffe Source: Journal of Petrology

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Albee, A. L. and Ray, L. (1970) Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates, and sulfates. Anal. Chem. 42 1408–14.
Allen, D. (1984) A one-stage precision polishing technique for geological specimens. Mineral. Mag. 48 298–300.
Anthony, E. Y., Reynolds, T. J. and Beane, R. E. (1974) Identification of daughter minerals in fluid inclusions using scanning electron microscopy and energy dispersive analysis. Amer. Mineral. 59 1053–7.
Armstrong, J. T. (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. In Electron Probe Quantitation, ed. Heinrich, K. F. J. and Newbury, D. E. (New York: Plenum Press) pp. 261–315.
Armstrong, J. T.(1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal. 4 177–200.
Autefage, F. and Couderc, J.-J. (1980) Etude du mécanisme de la migration du sodium et du potassium au cours de leur analyse à la microsonde électronique. Bull. Minéral. 203 623–9.
Ayora, C. and Fontarnau, R. (1990) X-ray microanalysis of frozen fluid inclusions. Chem. Geol. 89 135–48.
Bastin, G. F. and Heijligers, H. J. M. (1986) Quantitative electron probe microanalysis of carbon in binary carbides. I – Principles and procedures. X-Ray Spectrom. 15 135–41.
Bence, A. E. and Albee, A. L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol. 76 382–403.
Beran, A., Armstrong, J. and Rossman, G. R. (1992) Infrared and electron microprobe analysis of ammonium ions in hyalophane feldspar. Eur. J. Mineral. 4 847–50.
Boggs, S., Krinsley, D. H., Goles, G. G., Seyedolali, A. and Dypvik, H. (2001) Identification of shocked quartz by scanning cathodoluminescnce imaging. Meteoritics Planet. Sci. 36 783–91.
Boyde, A. (1979) The perception and measurement of depth in the SEM. Scanning Electron Microsc.1979/ II 67–78.
Bright, D. S. (1992) Visibility of two intermixed phases as a function of grain size and signal-to-noise: a computer simulation. In Proc. 50th Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G. W., Bentley, J. and Small, J. A. (San Francisco, CA: San Francisco Press) pp. 1610–11.
Bustin, R. M., Mastalertz, M. and Wilks, K. R. (1993) Direct determination of carbon, oxygen and nitrogen content in coal using the electron microprobe. Fuel 72 181–5.
Cabri, L. J. and Campbell, J. L. (1998) The proton microprobe in ore mineralogy (micro-PIXE technique). In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 181–98.
Carroll, M. R. and Rutherford, M. J. (1988) Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur X-rays. Amer. Mineral. 73 845–9.
Chaloner, W. G. and Gay, M. M. (1973) Scanning electron microscopy of latex casts of fossil plant impressions. Palaeontology 16 645–9.
Champness, P. E. (1995) Analytical electron microscopy. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 91–139.
Chapman, P. A. and Meagher, E. P. (1975) A technique for observing exsolution lamellae in pyroxenes with the scanning electron microscope. Amer. Mineral. 60 155–6.
Cliff, G. and Lorimer, G. W. (1975) The quantitative analysis of thin specimens. J. Microsc. 103 203–7.
Cosca, M. A., Essene, E. J. and Bowman, J. R. (1991) Complete chemical analyses of metamorphic hornblendes: implications for normalizations, calculated H2O activities, and thermobarometry. Contrib. Mineral. Petrol. 108 472–84.
Dalton, J. A. and Lane, S. J. (1996) Electron microprobe analysis of Ca in olivine close to grain boundaries: the problem of secondary X-ray fluorescence. Amer. Mineral. 81 194–201.
Danilatos, G. D. (1994) Environmental scanning electron microscopy and microanalysis. Mikrochim. Acta 114/5143–55.
Demars, C., Pagel, M., Deloule, E. and Blanc, P. (1996) Cathodoluminescence of quartz from sandstones: interpretation of the UV range by determination of trace element distributions and fluid inclusion P–T–X properties in authigenic quartz. Amer. Mineral. 81 891–901.
D'Lemos, R. S., Kearsley, A. T., Pembroke, J. W., Watt, G. R. and Wright, P. (1997) Complex quartz growth histories in granite revealed by scanning cathodoluminescence techniques. Geol. Mag. 134 549–52.
Donovan, J. J., Snyder, D. A. and Rivers, M. L. (1993) An improved interference correction for trace element analysis. Microbeam Anal. 2 23–8.
Droop, G. T. R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 51 431–5.
Eadington, P. J. (1974) Microprobe analysis of the non-volatile components in fluid inclusions. Neues Jahrb. Mineral., Monatsh.518–25.
Fagan, T. J., Taylor, G. J., Keil, K.et al. (2003) Northwest Africa 773: lunar origin and iron-enrichment trend. Meteoritics Planet. Sci. 38 529–54.
Feenstra, A. and Engi, M. (1998) An experimental study of the Fe-Mg exchange between garnet and ilmenite. Contrib. Mineral. Petrol. 131 379–92.
Fialin, M. (1988) Modification of Philibert–Tixier ZAF correction for geological samples. X-ray Spectrom. 17 103–6.
Fialin, M.(1992) Background determination in wavelength-dispersive electron microprobe analysis: some difficulties and presentation of a new analytical model. X-ray Spectrom. 21 175–81.
Fialin, M., Bézos, A., Wagner, C., Magnien, V. and Humler, E. (2004) Quantitative electron microprobe analysis of Fe3+/ΣFe: basic concepts and experimental protocol for glasses. Amer. Mineral. 89 654–62.
Finch, E. M. (1974) An improved method of mounting palaeontological specimens for scanning electron microscope examination. Palaeontology 17 431–4.
Fournier, C., Merlet, C., Dugne, O. and Fialin, M. (1999) Standardless semi-quantitative analysis with WDS-EPMA. J. Anal. Atom. Spectrom. 14 381–6.
Fournier, C., Merlet, C., Staub, P. F. and Dugne, O. (2000) An expert system for EPMA. Mikrochim. Acta 132 531–9.
Fraser, D. G. (1995) The nuclear microprobe – PIXE, PIGE, RBS, NRA and ERDA. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 141–62.
Gamberini, F. and Valdrè, G. (1995) Preparative method and analysis by OM, SEM and EPMA of porous, brittle and low permeability rocks and materials: the case of pumices. Microsc. Microanal. Microstruct. 6 573–86.
Ganguly, J., Bhattacharya, R. M. and Chakrabarty, S. (1988) Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. Amer. Mineral. 73 901–9.
Ginibre, C., Kronz, A. and Wörner, G. (2002) High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contrib. Mineral. Petrol. 142 436–48.
Goldstein, J. I., Newbury, D. E., Joy, D. C.et al. (2003) Scanning Electron Microscopy and X-Ray Microanalysis (New York: Kluwer Academic/Plenum).
Goncalves, P., Williams, M. L. and Jercinovic, M. J. (2005) Electron-microprobe age mapping of monazite. Amer. Mineral. 90 578–85.
Goodhew, P. J. and Gulley, J. E. C. (1975) The determination of alkali metals in glasses by electron microprobe analysis. Glass Technol. 15 123–6.
Halden, N. M., Campbell, J. L. and Teesdale, W. J. (1995) PIXE analysis in mineralogy and geochemistry. Canad. Mineral. 33 293–302.
Harris, D. H. (1990) Electron-microprobe analysis. In Advanced Microscopic Studies of Ore Minerals, ed. Jambor, J. L. and Vaughan, D. J., Short Course Handbook no. 17 (Ottawa: Mineralogical Association of Canada) pp. 319–39.
Heinrich, K. F. J. and Newbury, D. E. (1991) Electron Probe Quantitation (New York: Plenum Press).
Henke, B. L., Gullikson, E. M. and Davis, J. C. (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atom. Data Nucl. Data Tables 54 181–342.
Herd, C. D. K., Papike, J. J. and Brearley, A. J. (2001). Oxygen fugacity of martian basalts from electron microprobe oxygen and TEM–EELS analysis of Fe–Ti oxides. Amer. Mineral. 86 1015–24.
Higgins, S. J., Taylor, L. A., Chambers, J. G., Patchen, A. and McKay, D. S. (1996). X-ray digital-imaging petrography: technique development for lunar soils. Meteoritics Planet. Sci. 31 356–61.
Hinton, R. W. (1995) Ion microprobe analysis in geology. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 235–89.
Hochella, M. F. (1988) Auger electron and X-ray photoelectron spectroscopies. Rev. Mineral. 18 573–637.
Hochella, M. F., Harris, D. W. and Turner, A. M. (1986) Scanning Auger microscopy as a high-resolution microprobe for geologic materials. Amer. Mineral. 71 1247–57.
Humphries, D. W. (1992) The Preparation of Thin Sections of Rocks, Minerals, and Ceramics (Oxford: Oxford University Press).
Isabell, T. C., Fischione, P. E., O'Keefe, C., Guruz, M. U. and Dravid, V. P. (1999) Plasma cleaning and its applications for electron microscopy. Microsc. Microanal. 5 126–35.
Jacobson, C. E. (1989) Estimation of Fe3 + from electron microprobe analyses: observations on calcic amphibole and chlorite. J. Metamorphic Geol. 7 507–13.
Jarosewich, E. and Boatner, L. A. (1991) Rare-earth element reference samples for electron microprobe analysis. Geostand. Newslett. 15 397–9.
Jarosewich, E., Nelen, J. A. and Norberg, J. A. (1979) Electron microprobe reference samples for mineral analyses. Smithson. Contrib. Earth Sci. 22 68–72.
Jarosewich, E., Nelen, J. A. and Norberg, J. A.(1980) Reference samples for electron microprobe analysis. Geostand. Newslett. 4 43–8.
Jercinovic, M. J. and Williams, M. L. (2005) Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. Amer. Mineral. 90 526–46.
Joy, D. C. (1995) Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press).
Joy, D. C., Romig, A. D. and Goldstein, J. I., eds. (1986) Principles of Analytical Electron Microscopy (New York: Plenum Press).
Jurek, K., Renner, O. and Krousky, E. (1994) The role of coating densities in X-ray microanalysis. Mikrochim. Acta 114/115 323–6.
Kanaya, K. and Okayama, S. (1972) Penetration and energy-loss theory of electrons in solid targets. J. Phys. D 5 43–58.
Kerrick, D. M., Eminhizer, L. B. and Villaume, J. F. (1973) The role of carbon film thickness in electron microprobe analysis. Amer. Mineral. 58 920–5.
Kloprogge, J. T., Boström, T. E. and Weier, M. L. (2004) In situ observation of the thermal decomposition of weddelite by heating stage environmental scanning electron microscopy. Amer. Mineral. 89 245–8.
Knowles, C. R. (1987) A BASIC program to recast garnet end members. Computers Geosci. 13 655–8.
Krinsley, D. H., Pye, K., Boggs, S. and Tovey, N. K. (1998) Backscattered Scanning Electron Microscopy and Image Analysis of Sediments and Sedimentary Rocks (Cambridge: Cambridge University Press).
Labar, J. L. (1995) Standardless electron probe X-ray analysis of non-biological samples. Microbeam Anal. 4 65–83.
Laflamme, J. H. G. (1990) The preparation of materials for microsocopic study. In Advanced Microscopic Studies of Ore Minerals, ed. Jambor, J. L. and Vaughan, D. J. (Ottawa: Mineralogical Association of Canada) pp. 37–68.
Lane, S. J. and Dalton, J. A. (1994) Electron microprobe analysis of geological carbonates. Amer. Mineral. 79 745–9.
Lastra, R., Petruk, W. and Wilson, J. (1998). Image-analysis techniques and applications to mineral processing. In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 327–66.
Laubach, S. E., Reed, R. M., Olson, J. E., Lander, R. H. and Bonnell, L. M. (2004) Coevolution of crack–seal texture and fracture porosity in sedimentary rocks: cathodoluminescence observations of regional fractures. J. Struct. Geol. 26 967–82.
Llovet, X. and Galan, G. (2003) Correction of secondary X-ray fluorescence near grain boundaries in electron microprobe analysis: application to thermobarometry of spinel lherzolites. Amer. Mineral. 88 121–30.
Lloyd, G. E. (1987) Atomic number and crystallographic contrast images in the SEM: a review of backscattered electron techniques. Mineral. Mag. 51 3–19.
Lloyd, G. E., Hall, M. G., Cockayne, B. and Jones, D. W. (1981) Selected-area channelling patterns from geological materials: specimen preparation, indexing and representation of patterns, and applications. Canad. Mineral. 19 505–18.
Lohnes, R. A. and Demirel, T. (1978) SEM applications in soil mechanics. Scanning Electron Microsc.1978/ I 643–54.
Maaskant, P. and Kaper, H. (1991) Fluorescence effects at phase boundaries: petrological implications for Fe–Ti oxides. Mineral. Mag. 55 277–9.
Marinenko, R. B. (1991) Standards for electron probe microanalysis. In Electron Probe Quantitation, ed. Heinrich, K. F. J. and Newbury, D. E. (New York: Plenum Press) pp. 251–60.
Markowitz, A. and Milliken, K. L. (2003) Quantification of brittle deformation in burial compaction, Frio and Mount Simon Formation sandstones. J. Sed. Res. 73 1007–21.
Marshall, D. L. (1988) Cathodoluminescence of Geological Materials (Boston: Unwin Hyman).
Matthews, S. J., Moncrieff, D. H. S. and Carroll, M. R. (1999) Empirical calibration of the sulphur valence oxygen barometer from natural and experimental glasses: method and applications. Mineral. Mag. 63 421–31.
McGee, J. J. and Anovitz, L. M. (1996) Electron microprobe analysis of geologic materials for boron. In Boron: Mineralogy, Petrology and Geochemistry, ed. Grew, E. S. and Anovitz, L. M., Reviews of Mineralogy, vol. 33 (Washington: Mineralogical Society of America) pp. 771–88.
McGuire, A. V., Francis, C. A. and Dyar, M. D. (1992) Mineral standards for electron microprobe analysis of oxygen. Amer. Mineral. 77 1087–91.
McHardy, W. J., Wilson, M. J. and Tait, J. M. (1982) Electron microscope and X-ray diffraction studies of filamentous illitic clay from sandstones of the Magnus Field. Clay Mineral. 17 23–39.
McMahon, G. and Cabri, L. J. (1998) The SIMS technique in ore mineralogy. In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 153–80.
Metzger, F. W., Kelly, W. C., Nesbitt, B. E. and Essene, E. J. (1977) Scanning electron microscopy of daughter minerals in fluid inclusions. Econ. Geol. 72 141–52.
Miller, J. (1988) Microscopical techniques: 1. Slices, slides, stains and peels. In Techniques in Sedimentology, ed. Tucker, M. (Oxford: Blackwells) pp. 86–107.
Mills, A. A. (1988) Silver as a removable conductive coating for scanning electron microscopy. Scanning Microsc. 2 1265–71.
Mohr, D. W., Fritz, S. J. and Eckert, J. O. (1990) Estimation of elemental microvariation within minerals analyzed by the microprobe: use of model population estimates. Amer. Mineral. 75 1406–14.
Morgan, G. B. and London, D. (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glass. Amer. Mineral. 81 1176–85.
Morgan, G. B. and London, D. (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Amer. Mineral. 90 1131–8.
Moskowitz, B. M., Halgedahl, S. L. and Lawson, C. A. (1988) Magnetic domains on unpolished and polished surfaces of titanium-rich titanomagnetites. J. Geophys. Res. 93 3372–86.
Nash, W. P. (1992) Analysis of oxygen with the electron microprobe: applications to hydrated glasses and minerals. Amer. Mineral. 77 453–7.
Newbury, D. E. (2002) X-ray microanalysis in the variable pressure (environmental) scanning electron microscope. J. Res. Nat. Inst. Stand. Technol. 107 567–603.
Newbury, D. E., Joy, D. C., Echlin, P., Fiori, C. E. and Goldstein, J. I. (1986) Advanced Scanning Electron Microscopy and X-Ray Microanalysis (New York: Plenum Press).
Nicholls, J. and Stout, M. Z. (1986) Electron beam analytical instruments and the determination of modes, spatial variations in minerals and textural features of rocks in polished section. Contrib. Mineral. Petrol. 94 395–404.
Nielsen, C. H. and Sigurdsson, H. (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Amer. Mineral. 66 547–52.
Oliveira, D. P. S. de, Reed, R. M., Milliken, K. L. et al. (2003) (Meta)cherts, (meta)lydites, (meta)phthanites and quartzites of the série negra (Crato-S. Martinho), E. Portugal: towards a correct nomenclature based on mineralogy and cathodoluminescence studies. Ciências da Terra, special issue no. V, 29.
Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D. (2000) Cathodoluminescence in Geosciences (Berlin: Springer).
Patsoules, M. G. and Cripps, J. C. (1983) A quantitative analysis of chalk pore geochemistry using resin casts. Energy Sources 7 15–31.
Perkins, W. T. and Pearce, N. J. G. (1995) Mineral microanalysis by laserprobe inductively coupled plasma mass spectrometry. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 291–325.
Pingitore, N. E., Meitzner, G. and Love, K. M. (1997) Discrimination of sulfate from sulfide in carbonates by electron probe microanalysis. Carbonates Evaporites 12 130–3.
Potts, P. J. and Tindle, A. G. (1989) Analytical characteristics of a multilayer dispersion element (2d = 60 Å) in the determination of fluorine in minerals by electron microprobe. Mineral. Mag. 53 357–62.
Potts, P. J., Tindle, A. G. and Isaacs, M. C. (1983) On the precision of electron microprobe data: a new test for the homogeneity of mineral standards. Amer. Mineral. 68 1237–42.
Prior, D. J., Boyle, A. P., Brenker, F.et al. (1999) The application of electron backscatter diffraction and orientation contrast imaging in the scanning electron microscope to textural problems. Amer. Mineral. 84 1741–59.
Prior, D. J., Trimby, P. W., Weber, U. D. and Dingley, D. J. (1996) Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineral. Mag. 60 859–69.
Purvis, K. (1991) Fibrous clay mineral collapse produced by beam damage during scanning electron microscopy. Clay Mineral. 26 141–5.
Pyle, J. M., Spear, F. S., Wark, D. A., Daniel, C. G. and Storm, L. C. (2005) Contribution to precision and accuracy of monazite microprobe ages. Amer. Mineral. 90 547–77.
Pyman, M. A. F., Hillyer, J. W. and Posner, A. M. (1978) The conversion of X-ray intensity ratios to compositional ratios in the electron probe analysis of small peaks using mineral standards. Clays Clay Mineral. 26 296–8.
Reay, A., Johnstone, R. A. and Kawachi, Y. (1989) Kaersutite, a possible international microprobe standard. Geostand. Newslett. 13 187–90.
Reed, R. M. and Milliken, K. L. (2003) How to overcome imaging problems associated with carbonate minerals on SEM-based cathodoluminescence systems. J. Sed. Res. 73 328–32.
Reed, S. J. B. (2000) Quantitative trace analysis by wavelength-dispersive EPMA. Mikrochim. Acta 132 145–51.
Reed, S. J. B. and Buckley, A. (1996) Virtual WDS. Mikrochim. Acta Suppl. 13, 479–83.
Reed, S. J. B. and Buckley, A.(1998) Rare-earth element determination in minerals by electron-probe microanalysis: application of spectrum synthesis. Mineral. Mag. 62 1–8.
Rehbach, W. P. and Karduck, P. (1992) Mikrochim. Acta Suppl. 121 153–60.
Reid, A. F., Gottlieb, P., MacDonald, K. J. and Miller P. R. (1985) QEM∗SEM image analysis of ore minerals: volume fraction, liberation, and observational variances. In Applied Mineralogy, ed. Park, W. C., Hausen, W. M. and Hagni, R. D. (New York: Metallurgical Society AIME) pp. 191–204.
Reid, A. M., leRoex, A. P., and Minter, W. E. L. (1988) Composition of gold grains in the Vaal Placer, Klerksdorp, South Africa. Mineral. Deposit. 23 211–7.
Richard, L. R. and Clarke, D. B. (1990) AMPHIBOL: a program for calculating structural formulae and for classifying and plotting chemical analyses of amphiboles. Amer. Mineral. 75 421–3.
Robinson, B. W. (1998) The “Geosem” (low-vacuum SEM): an under-utilized tool for mineralogy. In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 139–51.
Robinson, B. W., Ware, N. G. and Smith, D. G. W. (1998) Modern electron microprobe trace element analysis in mineralogy. In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 153–80.
Roeder, P. L (1985) Electron-microprobe analysis of minerals for rare-earth elements: use of calculated peak-overlap corrections. Canad. Mineral. 23 263–71.
Schumacher, J. C. (1991) Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers. Mineral. Mag. 55 3–18.
Schwartz, A. J., Kumar, M. and Adams, B. L. (2000) Electron Backscatter Diffraction in Materials Science (New York: Kluwer).
Sela, J. and Boyde, A. (1977) Cyanide removal of gold from SEM specimens. J. Microsc. 111 229–31.
Small, J. A., Newbury, D. E. and Myklebust, R. L. (1979) Analysis of particles and rough samples by FRAME P, a ZAF method incorporating peak-to-background measurements. In Microbeam Analysis – 1979, ed. Newbury, D. E (San Francisco, CA: San Francisco Press) pp. 243–6.
Smart, P. and Tovey, N. K. (1982) Electron Microscopy of Soils and Sediments: Techniques (Oxford: Oxford University Press).
Smith, D. G. W. and Leibowitz, D. (1986) MinIdent: a database for minerals and a computer program for their identification. Canad. Mineral. 24 695–708.
Smith, J. V. and Rivers, M. L. (1995) Synchrotron X-ray microanalysis. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 163–233.
Smith, M. P. (1986) Silver coating inhibits electron microprobe beam damage of carbonates. J. Sed. Petrol. 56 560–1.
Spear, F. S. and Daniel, C. G. (1998). 3-Dimensional imaging of garnet porphyroblast sizes and chemical zoning: nucleation and growth history in the garnet zone. Geol. Mater Res. 1 1–44.
Statham, P. J. and Pawley, J. (1977) A new method for particle X-ray microanalysis based on peak-to-backround measurement. Scanning Electron Microsc.1978/ I 445–54.
Stormer, J. C., Pierson, M. L. and Tacker, R. C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Amer. Mineral. 78 641–8.
Tindle, A. G. and Webb, P. C. (1990) Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. Eur. J. Mineral. 2 595–610.
Tindle, A. G. and Webb, P. C.(1994) PROBE-AMPH – a spreadsheet program to classify microprobe-derived amphibole analyses. Computers Geosci. 20 1201–28.
Uwins, P. J. R., Baker, J. C. and Mackinnon, I. D. R. (1993) Imaging fluid/solid interactions in hydrocarbon reservoir rocks. Microsc. Res. Tech. 25 465–73.
Waldron, K., Lee, M. R. and Parsons, I. (1994) The microstructures of perthitic alkali feldspars revealed by hydrofluoric acid etching. Contrib. Mineral. Petrol. 116 360–4.
Walker, B. M. (1978) Chalk pore geometry using resin pore casts. In Scanning Electron Microscopy in the Study of Sediments, ed. Whalley, W. B. (Norwich: Geo Abstracts).
Wallace, P. J. and Carmichael, I. S. E. (1994) S speciation in submarine basaltic glasses as determined by measurements of S Kα X-ray wavelength shifts. Amer. Mineral. 79 161–7.
Ware, N. G. (1991) Combined energy-dispersive–wavelength-dispersive quantitative electron microprobe analysis. X-Ray Spectrom. 20 73–9.
Watt, G. R., Griffin, B. J. and Kinny, P. D. (2000) Charge contrast imaging of geological materials in the environmental scanning electron microscope. Amer. Mineral. 85 1784–94.
Watt, G. R., Oliver, N. H. S. and Griffin, B. J. (2000) Evidence for reaction-induced microfracturing in granulite facies migmatites. Geology 28 327–30.
Watt, G. R., Wright, P., Galloway, S. and McLean, C. (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochim. Cosmochim. Acta 61 4337–48.
Wiens, R. C., Burnett, D. S., Armstrong, J. T. and Johnson, M. L. (1994) A simple method to recognize and correct for surface roughness in scanning electron microscope energy-dispersive spectroscopy. Microbeam Anal. 3 117–24.
Willich, P. and Obertop, D. (1990) Quantitative EPMA of ultra-light elements in non-conducting materials. In Proc. 12th ICXOM, Cracow, ed. Jasleńska, S. and Maksymowicz, J. (Kraków: Academy of Mining Metallurgy) pp. 100–3.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.