Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T20:48:17.846Z Has data issue: false hasContentIssue false

4 - The bottle neck: macromolecular sequences

Published online by Cambridge University Press:  17 December 2010

Pier Luigi Luisi
Affiliation:
ETH Zentrum, Switzerland
Get access

Summary

Introduction

Having highlighted some of the data and issues about the prebiotic chemistry of low-molecular-weight compounds, let's now turn to the functional long chains – mostly proteins and nucleic acids. The first part of this chapter is devoted to the prebiotic chemistry of biopolymers, the second part, which will necessarily be more speculative, to ideas of conceiving the very origin of macromolecular sequences.

Our biology is regulated by the catalytic power of enzymes and by the encoding power of nucleic acids. This chapter may begin with one very general question: “Why macromolecules? What is so peculiar in their great length that makes these molecules essential for life? Why didn't nature do it all using smaller peptides or smaller oligonucleotides? Why this … and not that?”

The question “why are enzymes macromolecules?” is an old issue in structural biochemistry, and one with which I liked to play around in my younger days (Luisi, 1979). Clearly, there are good reasons for long chains: only a long chain permits the dilution in the same string of many active residues and, simultaneously, their mutual proximity due to the forced folding; in turn, this folding and the corresponding conformational rigidity is due to the very large number of intramolecular interactions, which is only possible in long chains; the consequence of the length is an elaborate three-dimensional architecture that brings forth a particular micro-environment and reactivity of the active site; the large size is also responsible for the overall physicochemical properties, such as solubility in water or affinity to the membrane, conformational changes and cooperativity.

Type
Chapter
Information
The Emergence of Life
From Chemical Origins to Synthetic Biology
, pp. 59 - 84
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×