Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T14:02:14.236Z Has data issue: false hasContentIssue false

6 - Diffusion and Deposition of Radioactive Materials in the Terrestrial Environment

from Part I - Transport of Radioactive Materials in the Environment

Published online by Cambridge University Press:  16 August 2019

Teruyuki Nakajima
Affiliation:
University of Tokyo
Toshimasa Ohara
Affiliation:
National Institute for Environmental Studies, Japan
Mitsuo Uematsu
Affiliation:
University of Tokyo
Yuichi Onda
Affiliation:
University of Tsukuba, Japan
Get access

Summary

Radioactive materials emitted from the Fukushima Daiichi Nuclear Power Station (FDNPS) were deposited on soils and trees in forested areas, agricultural land and urban areas. It is expected that the radioactively polluted soils and radioactive materials would spread through erosion of soils from mountains and rivers. In this chapter, we first examine the behaviour of radioactive materials deposited on the ground in upcountry districts. Second, we discuss the movement of radioactive materials from various types of flatlands and forests in mountainous areas based on their chemical forms in soils and on trees. Finally, we report on the accumulation and transfer of radioactive materials to vegetation such as trees.

Type
Chapter
Information
Environmental Contamination from the Fukushima Nuclear Disaster
Dispersion, Monitoring, Mitigation and Lessons Learned
, pp. 167 - 212
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, Y., Iizawa, Y., Terada, Y., et al. (2014). Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal. Chem., 17, 8521–5.Google Scholar
Adachi, K., Kajino, M., Zaizen, Y. and Igarashi, Y. (2013). Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep., 3, 2554.CrossRefGoogle ScholarPubMed
ANR (2012). Appel à projets ‘Recherche en matière de sûreté nucléaire et de radioprotection’. http://bit.ly/2BXZhZV (accessed 19 September 2018) (in French).Google Scholar
Banwart, S., Chorover, J., Gaillardet, J., et al. (2013). Sustaining Earth’s Critical Zone: Basic Science and Interdisciplinary Solutions for Global Challenges. Sheffield: University of Sheffield.Google Scholar
Broadley, M. R., Willey, N. J. and Mead, A. (1999). A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environ. Pollut., 106, 341–9.Google Scholar
Cao, L., Zheng, J., Tsukada, H., et al. (2016). Simultaneous determination of radiocesium (135Cs, 137Cs) and plutonium (239Pu, 240Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS. Talanta, 159, 5563.CrossRefGoogle ScholarPubMed
Chagvardieff, P. (2014). La phytoremédiation des sols contaminés par des éléments chimiques radioactifs. Revue Générale Nucléaire, 5, 4951.CrossRefGoogle Scholar
Chartin, C., Evrard, O., Onda, Y., et al. (2013). Tracking the early dispersion of contaminated sediment along rivers draining the Fukushima radioactive pollution plume. Anthropocene, 1, 2334.CrossRefGoogle Scholar
Chartin, C., Evrard, O., Laceby, J. P., et al. (2017). The impact of typhoons on sediment connectivity: lessons learnt from contaminated coastal catchments of the Fukushima Prefecture (Japan). Earth Surf. Process. Landf., 42(2), 306–17.Google Scholar
Chino, M., Nakayama, H., Nagai, H., et al. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol., 48, 1129–34.CrossRefGoogle Scholar
Christoudias, T., Proestos, Y. and Lelieveld, J. (2014). Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades. Atmos. Chem. Phys., 14(9), 4607–16.CrossRefGoogle Scholar
Coppin, F., Hurtevent, P., Loffredo, N., et al. (2016). Radiocaesium partitioning in Japanese cedar forests following the ‘early’ phase of Fukushima fallout redistribution. Sci. Rep., 6, 37618.CrossRefGoogle ScholarPubMed
Delmas, M., Garcia-Sanchez, L., Nicoulaud-Gouin, V. and Onda, Y. (2017). Improving transfer functions to describe radiocesium wash-off fluxes for the Niida River by a Bayesian approach. J. Environ. Radioact., 167, 100–9.CrossRefGoogle ScholarPubMed
Evrard, O., Pointurier, F., Onda, Y., et al. (2014). Novel insights into Fukushima nuclear accident from isotopic evidence of plutonium spread along coastal rivers. Environ. Sci. Technol., 48(16), 9334–40.CrossRefGoogle ScholarPubMed
Evrard, O., Laceby, J. P., Lepage, H., et al. (2015). Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: a review. J. Environ. Radioact., 148, 92110.CrossRefGoogle Scholar
Evrard, O., Laceby, J. P., Onda, Y., et al. (2016). Quantifying the dilution of the radiocesium contamination in Fukushima coastal river sediment (2011–2015). Sci. Rep., 6, 34828.Google Scholar
Fan, Q. H., Tanaka, M., Tanaka, K., Sakaguchi, A. and Takahashi, Y. (2014). An EXAFS study on the effect of natural organic matter and the expansibility of clay mineral on cesium adsorption and mobility. Geochim. Cosmochim. Acta, 135, 4965.Google Scholar
Fuhrmann, M., Lasat, M., Ebbs, S., Cornish, J. and Kochian, L. (2003). Uptake and release of cesium-137 by five plant species as influenced by soil amendments in field experiments. J. Environ. Qual., 32, 2272–9.Google Scholar
Garcia-Sanchez, L. and Konoplev, A. V. (2009). Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients. J. Environ. Radioact., 100(9), 774–8.CrossRefGoogle ScholarPubMed
Garnier-Laplace, J., Beaugelin-Seiller, K. and Hinton, T. G.. (2011). Fukushima wildlife dose reconstruction signals ecological consequences. Environ. Sci. Technol., 45(12), 5077–8.Google Scholar
Hansen, V., Roos, P., Aldahan, A., Hou, X. L. and Possnert, G. (2011). Partition of iodine (129I and 127I) isotopes in soils and marine sediments. J. Environ. Radioact., 102, 1096–104.Google Scholar
He, Q. and Walling, D. E. (1996). Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J. Environ. Radioact., 30, 117–37.CrossRefGoogle Scholar
Hou, X. L., Fogh, C. L., Kucera, J., et al. (2003). Iodine-129 and cesium-137 in Chernobyl contamination soil and their chemical fractionation. Sci. Total Environ., 308, 97109.CrossRefGoogle Scholar
Hou, X. L., Povinec, P. P., Zhang, L. Y., et al. (2013). Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ. Sci. Technol., 47, 3091–8.Google Scholar
Jacob, P., Goulko, G., Heidenreich, W. F., et al. (1998). Thyroid cancer risk to children calculated. Nature, 392, 31–2.Google Scholar
JST (2012). J-RAPID Strategic International Research Cooperative Program. Japan Science and Technology Agency. www.jst.go.jp/inter/english/sicp/country/j-rapid.html (accessed 19 September 2018).Google Scholar
Kakehi, S., Kaeriyama, H., Ambe, D., et al. (2016). Radioactive cesium dynamics derived from hydrographic observations in the Abukuma River Estuary, Japan. J. Environ. Radioact., 153, 19.CrossRefGoogle ScholarPubMed
Katata, G., Ota, M., Terada, H., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact., 109, 103–13.Google Scholar
Kato, H., Onda, Y. and Tesfaye, T. (2012a). Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact., 111, 5964.Google Scholar
Kato, H., Onda, Y. and Gomi, T. (2012b). Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys. Res. Lett., 39 (20), L20403, doi:10.1029/2012GL052928.Google Scholar
Kato, H., Onda, Y., Hisadome, K., Loffredo, N. and Kawamori, A. (2017). Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 166, 449–57.CrossRefGoogle ScholarPubMed
Kato, H., Onda, Y., Wakahara, T. and Kawamori, A. (2018). Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident. Sci. Total Environ., 615, 187–96.Google Scholar
Kazakov, V. S., Demidchik, E. P. and Astakhova, L. N. (1992). Thyroid cancer after Chernobyl. Nature, 359, 21–2.Google Scholar
Kinoshita, N., Sueki, K., Sasa, K., et al. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc. Natl. Acad. Sci. USA, 108, 19526–9.CrossRefGoogle ScholarPubMed
Kitamura, A., Yamaguchi, M., Kurikami, H., Yui, M. and Onishi, Y. (2014). Predicting sediment and cesium-137 discharge from catchments in eastern Fukushima. Anthropocene, 5, 2231.CrossRefGoogle Scholar
Kobayashi, T., Nagai, H., Chino, M. and Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol., 50, 255–64.CrossRefGoogle Scholar
Konoplev, A., Golosov, V., Laptev, G., et al. (2016). Behavior of accidentally released radiocesium in soil–water environment: looking at Fukushima from a Chernobyl perspective. J. Environ. Radioact., 151(3), 568–78.CrossRefGoogle ScholarPubMed
Kurikami, H., Funaki, H., Malins, A., Kitamura, A. and Onishi, Y. (2016). Numerical study of sediment and 137Cs discharge out of reservoirs during various scale rainfall events. J. Environ. Radioact., 164, 7383.CrossRefGoogle ScholarPubMed
Laceby, J. P., Chartin, C., Evrard, O., et al. (2016a). Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident. Hydrol. Earth Syst. Sci., 20(6), 2467–82.Google Scholar
Laceby, J. P., Huon, S., Onda, Y., Vaury, V. and Evrard, O. (2016b). Do forests represent a long-term source of contaminated particulate matter in the Fukushima Prefecture? J. Environ. Manage., 183(3), 742–53.Google Scholar
Lasat, M. M., Fuhrmann, M., Ebbs, S. D., Cornish, J. E. and Kochian, L. V. (1998). Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J. Environ. Qual., 27, 165–9.CrossRefGoogle Scholar
Loffredo, N., Onda, Y., Kawamori, A. and Kato, H. (2014). Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident. Sci. Total Environ, 493, 701–7.Google Scholar
Matsunaga, T., Koarashi, J., Atarashi, M. A., et al. (2013). Comparison of the vertical distributions of Fukushima nuclear accident radiocesium in soil before and after the first rainy season, with physicochemical and mineralogical interpretations. Sci. Total Environ., 447, 301–14.Google Scholar
Matsunaka, T., Sasa, K., Sueki, K., et al. (2015). Post-accident response of near-surface 129I levels and 129I/127I ratios in areas close to the Fukushima Dai-ichi Nuclear Power Plant. Japan. Nucl. Instrum. Methods Phys. Res. Sect. B, 361, 569–73.Google Scholar
Matsunaka, T., Sasa, K., Sueki, K., et al. (2016). Pre- and post-accident 129I and 137Cs levels, and 129I/137Cs ratios in soil near the Fukushima Dai-ichi Nuclear Power Plant. Japan. J. Environ. Radioact., 151, 209–17.Google Scholar
Matsuzaki, H., Muramatsu, Y., Kato, K., Yasumoto, M. and Nakano, C. (2007). Development of 129I-AMS system at MALT and measurements of 129I concentrations in several Japanese soils. Nucl. Instrum. Methods Phys. Res. B, 259(1), 721–6.CrossRefGoogle Scholar
MEXT (Ministry of Education, Culture, Sports, Science and Technology) (2011a). Extension site of distribution map of radiation dose, etc. http://ramap.jmc.or.jp/map/eng (accessed 19 September 2018).Google Scholar
MEXT (2011b). 4th Airborne monitoring, http://bit.ly/2VrjJtA (accessed 19 September 2018).Google Scholar
Mikami, S., Maeyama, T., Hoshide, Y., et al. (2015). Spatial distributions of radionuclides deposited onto ground soil around the Fukushima Dai-ichi Nuclear Power Plant and their temporal change until December 2012. J. Environ. Radioact., 139, 320–43.Google Scholar
Mironov, V., Kudrjashova, V., Yioub, F. and Raisbeck, G. M. (2002). Use of 129I and 137Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident. J. Environ. Radioact., 59, 293307.Google Scholar
Miyake, Y., Matsuzaki, H., Fujiwara, T., et al. (2012). Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima Daiichi NPP accident. Geochem. J., 46, 327–33.Google Scholar
Miyake, Y., Matsuzaki, H., Sasa, K. and Takahashi, T. (2015). Measurement of long-lived radionuclides in surface soil around F1NPP accident site by accelerator mass spectrometry. Nucl. Instr. Meth. B, 361, 627–31.CrossRefGoogle Scholar
Muramatsu, Y., Takada, Y., Matsuzaki, H. and Yoshida, S. (2008). AMS analysis of 129I in Japanese soil samples collected from background areas far from nuclear facilities. Quat. Geochro., 3, 291–7.Google Scholar
Muramatsu, Y., Matsuzaki, H., Toyama, C. and Ohno, T. (2015). Analysis of 129I in the soils of Fukushima Prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP). J. Environ. Radioact., 139, 5964.CrossRefGoogle Scholar
Nagao, S., Kanamori, M., Ochiai, S., et al. (2013). Export of 134Cs and 137Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011. Biogeosciences, 10(10), 6215–23.Google Scholar
Naulier, M., Eyrolle-Boyer, F., Boyer, P., Metivier, J. M. and Onda, Y. (2017). Particulate organic matter in rivers of Fukushima: an unexpected carrier phase for radiocesiums. Sci. Total Environ., 579, 1560–71.CrossRefGoogle ScholarPubMed
Nishihara, K., Iwamoto, H. and Suyama, K. (2012). Estimation of Fuel compositions in Fukushima-Daiichi Nuclear Power Plant. In JAEA-Data/Code 012-018. Ibaraki: Japan Atomic Energy Agency, pp. 1190.Google Scholar
Onda, Y., Kato, H., Hoshi, M., et al. (2015). Soil sampling and analytical strategies for mapping fallout in nuclear emergencies. J. Environ. Radioact., 139, 300–7.Google Scholar
Qin, H., Yokoyama, Y., Fan, Q., et al. (2012). Investigation of cesium adsorption on soil and sediment samples from Fukushima Prefecture by sequential extraction and EXAFS technique. Geochem. J., 46, 355–60.Google Scholar
Saito, K. and Onda, Y. (2015). Outline of the national mapping projects implemented after the Fukushima accident. J. Environ. Radioact., 139, 240–9.Google Scholar
Saito, K., Tanihata, I., Fujiwara, M., et al. (2015). Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 308–19.Google Scholar
Sakaguchi, A., Tanaka, K., Iwatani, H., et al. (2015). Size distribution studies of 137Cs in river water in the Abukuma Riverine system following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 379–89.CrossRefGoogle ScholarPubMed
Sato, M., Takata, D., Tanoi, K., Ohtsuki, T. and Muramatsu, Y. (2015). Radiocesium transfer into the fruit of deciduous fruit trees contaminated during dormancy. Soil Sci. Plant Nutr., 61(1), 156–64, doi:10.1080/00380768.2014.975103.Google Scholar
Shimamoto, Y. S., Itai, T. and Takahashi, Y. (2010). Soil column experiments for iodate and iodide using K-edge XANES and HPLC-ICP-MS. J. Geochem. Exploration, 107, 117–23.Google Scholar
Shimamoto, Y. S., Takahashi, Y. and Terada, Y. (2011). Formation of organic iodine supplied as iodide in a soil–water system in Chiba. Japan. Environ. Sci. Technol., 45, 2086–91.Google Scholar
Steinhauser, G. (2014). Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions. Environ. Sci. Technol., 48(9), 4649–63.Google Scholar
Steinhauser, G., Brandl, A. and Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci. Total Environ., 470 –471, 800–17.Google Scholar
Sugiura, Y., Shibata, M., Ogata, Y., et al. (2016). Evaluation of radiocesium concentrations in new leaves of wild plants two years after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 160, 824.CrossRefGoogle ScholarPubMed
Syvitski, J. P. M., Kettner, A. J., Peckham, S. D. and Kao, S.-J. (2005). Predicting the flux of sediment to the coastal zone: application to the Lanyang Watershed, Northern Taiwan. J. Coast. Res., 213, 580–7.Google Scholar
Takahashi, J., Tamura, K., Suda, T., Matsumura, R. and Onda, Y. (2015). Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after Fukushima Dai-ichi Nuclear Power Plant Accident. J. Environ. Radioact., 139, 351–61.Google Scholar
Takata, Y., Kohyama, K., Obara, H., et al. (2014). Spatial prediction of radioactive Cs concentration in agricultural soil in eastern Japan. Soil Sci. Plant Nutr., 60, 393403.Google Scholar
Takenaka, C. and Kiyono, Y. (2012). Redistribution of radionuclides through pollen dispersion. Shinringijutu, 840,189–23 (in Japanese).Google Scholar
Tanaka, K., Takahashi, Y., Sakaguchi, A., et al. (2012). Vertical profiles of iodine-131 and cesium-137 in soils in Fukushima prefecture related to the Fukushima Daiichi Nuclear Power Station accident. Geochem. J., 46, 73–6.Google Scholar
Tanaka, K., Sakaguchi, A., Kanai, Y., , H., et al. (2013). Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems. J. Radioanal. Nucl. Chem., 295, 1927–37.Google Scholar
Terada, H., Katata, G., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141–54.Google Scholar
Ueda, S., Hasegawa, H., Kakiuchi, H., et al. (2013). Fluvial discharges of radiocaesium from watersheds contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. J. Environ. Radioact., 118, 96104.Google Scholar
Vandenhove, H., VanHees, M., DeBrouwer, S. and Vandecasteele, C. M. (1996). Transfer of radiocaesium from podzol to ryegrass as affected by AFCF concentration. Sci. Total Environ., 187, 237–45.CrossRefGoogle Scholar
Wakahara, T., Onda, Y., Kato, H., Sakaguchi, A. and Yoshimura, K. (2014). Radiocesium discharge from paddy fields with different initial scrapings for decontamination after the Fukushima Dai-ichi Nuclear Power Plant accident. Environ. Sci. Process. Impact, 16 (11), 2580–91.Google Scholar
Wang, W., Hanai, Y., Takenaka, C., et al. (2016). Cesium adsorption and absorption through bark of Japanese cedar (Cryptomeria japonica). J. Forest Res., 21, 251–8.CrossRefGoogle Scholar
Yamashiki, Y., Onda, Y., Smith, H., et al. (2014). Initial flux of sediment-associated radiocaesium to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant. Sci. Rep., 4, 3714, doi:10.1038/srep03714.Google Scholar
Yoshida, S., Muramatsu, Y. and Ogawa, M. (1994). Radiocesium concentrations in mushrooms collected in Japan. J. Environ. Radioactiv., 22,141–54.Google Scholar
Yoshimura, K., Onda, Y. and Kato, H. (2015). Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots. J. Environ. Radioact., 139, 362–9.CrossRefGoogle ScholarPubMed
Zhang, L. Y. and Hou, X. L. (2013). Speciation analysis of 129I and its applications in environmental research. Radiochim. Acta, 101, 525–40.CrossRefGoogle Scholar
Zheng, J., Tagami, K., Bu, W., et al. (2014). 135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident. Environ. Sci. Technol., 48(10), 5433–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×