Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-17T14:48:01.486Z Has data issue: false hasContentIssue false

5 - Reptiles

from IIb - Escape decisions prior to pursuit

Published online by Cambridge University Press:  05 June 2015

William E. Cooper, Jr
Affiliation:
Indiana University–Purdue University, Indianapolis
Daniel T. Blumstein
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Escaping From Predators
An Integrative View of Escape Decisions
, pp. 113 - 151
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateman, P. W. & Fleming, P. A. (2009). To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. Journal of Zoology, 277, 114.Google Scholar
Berger, S., Wikelski, M., Romero, L. M., Kalko, E. K. V. & Rödl, T. (2007). Behavioral and physiological adjustments to new predators in an endemic island species, the Galápagos marine iguana. Hormones and Behavior, 52, 653663.Google Scholar
Bisazza, A., Rogers, L. J. & Vallortigarac, G. (1998). The origins of cerebral asymmetry: A review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neuroscience and Biobehavioral Reviews, 22, 411426.Google Scholar
Blamires, S. J. (1999). Factors influencing the escape response of an arboreal agamid lizard of tropical Australia (Lophognathus temporalis) in an urban environment. Canadian Journal of Zoology, 77, 19982003.Google Scholar
Blumstein, D. T. (2003). Flight-initiation distance in birds is dependent on intruder starting distance. Journal of Wildlife Management, 67, 852857.Google Scholar
Brodie, E. D. III. (1989). Genetic correlations between morphology and antipredator behavior in natural populations of the garter snake Thamnophis ordinoides. Nature, 342, 542543.Google Scholar
Brodie, E. D. III (1992). Correlational selection for clolor patterns and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 46, 12841298.Google Scholar
Brown, G. P. & Shine, R. (2004). Effects of reproduction on the antipredator tactics of snakes (Tropidophis mairii, Colubridae). Behavioral Ecology and Sociobiology, 56, 257262.Google Scholar
Bulova, S. J. (1994). Ecological correlates of population and individual variation in antipredator behavior of two species of desert lizards. Copeia, 1994, 980992.Google Scholar
Burger, J. & Gochfeld, M. (1993). The importance of the human face in risk perception by black iguanas, Ctenosaura similis. Journal of Herpetology, 27, 426430.Google Scholar
Burger, J., Gochfeld, M. & Murray, B. G. Jr. (1991). The role of a predator’s eye size in risk perception by basking black iguana, Ctenosaura similis. Animal Behaviour, 42, 471476.Google Scholar
Burger, J., Gochfeld, M. & Murray, B. B. Jr. (1992). Risk discrimination of eye contact and directness of approach in black iguanas (Ctenosaura similis). Journal of Comparative Psychology, 106, 97101.Google Scholar
Clark, C. W. (1994). Antipredator behavior and the asset-protection principle. Behavioral Ecology, 5, 159170.Google Scholar
Congdon, J. D., Vitt, L. J. & King, W. W. (1974). Geckos: Adaptive significance and energetics of tail autotomy. Science, 184, 13791380.Google Scholar
Cooper, W. E. Jr. (1997a). Escape by a refuging prey, the broad-headed skink (Eumeces laticeps). Canadian Journal of Zoology, 75, 943947.Google Scholar
Cooper, W. E. Jr. (1997b). Threat factors affecting antipredatory behavior in the broad-headed skink (Eumeces laticeps): Repeated approach, change in predator path, and predator’s field of view. Copeia, 1997, 613619.Google Scholar
Cooper, W. E. Jr. (1998a). Effects of refuge and conspicuousness on escape behavior by the broad-headed skink (Eumeces laticeps). Amphibia-Reptilia, 19, 103108.Google Scholar
Cooper, W. E. Jr. (1998b). Reactive and anticipatory display to deflect predatory attack to an autotomous lizard tail. Canandian Journal of Zoology, 76, 15071510.Google Scholar
Cooper, W. E. Jr. (1998c). Direction of predator turning, a neglected cue to predation risk. Behaviour, 135, 5564.Google Scholar
Cooper, W. E. Jr. (1999a). Escape behavior by prey blocked from entering the nearest refuge. Canadian Journal of Zoology, 77, 671674.Google Scholar
Cooper, W. E. Jr. (1999b). Tradeoffs between courtship, fighting, and antipredatory behavior by a lizard, Eumeces laticeps. Behavioral Ecology and Sociobiology, 47, 5459.Google Scholar
Cooper, W. E. Jr. (2003). Shifted balance of risk and cost after autotomy affects use of cover, escape, activity, and foraging in the keeled earless lizard (Holbrookia propinqua). Behavioral Ecology and Sociobiology, 54, 179187.Google Scholar
Cooper, W. E. Jr. (2006a). Dynamic risk assessment: Prey rapidly adjust flight initiation distance to changes in predator approach speed. Ethology, 112, 858864.Google Scholar
Cooper, W. E. Jr. (2006b). Risk factors affecting escape grahamÿr by Puerto rican Anolis lizards. Canadian Journal of Zoology, 84, 495504.Google Scholar
Cooper, W. E. Jr. (2007a). Escape and its relationship to pursuit-deterrent grahamÿrÿ in the Cuban curly-tailed lizard Leiocephalus carinatus. Herpetologica, 63, 144150.Google Scholar
Cooper, W. E. Jr. (2007b). Compensatory changes in escape and refuge use following autotomy in the lizard Sceloporus virgatus. Canadian Journal of Zoology, 85, 99107.Google Scholar
Cooper, W. E. Jr. (2007c). Foraging modes as suites of coadapted movement traits. Journal of Zoology, 272, 4556.Google Scholar
Cooper, W. E. Jr. (2008). Strong artifactual effect of starting distance on flight initiation distance in the actively foraging lizard Aspidoscelis exsanguis. Herpetologica, 64, 200206.Google Scholar
Cooper, W. E. Jr. (2009a). Rapid covering by shadow as a cue to predation risk in three lizard species. Behaviour, 146, 12171234.Google Scholar
Cooper, W. E. Jr. (2009b). Flight initiation distance decreases during social activity in lizards (Sceloporus virgatus). Behavioral Ecology and Sociobiology, 63, 17651771.Google Scholar
Cooper, W. E. Jr. (2009c). Fleeing and hiding under simultaneous risks and costs. Behavioral Ecology, 20, 665671.Google Scholar
Cooper, W. E. Jr. (2010a). Pursuit deterrence varies with predation risks affecting escape behavior in the lizard Callisaurus draconoides. Animal Behaviour, 80, 249256.Google Scholar
Cooper, W. E. Jr. (2010b). Escape tactics and effects of perch height and habituation on flight initiation distance in two Jamaican anoles (Squamata: Polychrotidae). Revista de Biologia Tropical, 58, 11991209.Google Scholar
Cooper, W. E. Jr. (2011a). Age, sex and escape grahamÿr in the striped plateau lizad (Sceloporus virgatus) and the mountain spiny lizard (Sceloporus jarrovii), with a review of age and sex effects on escape by lizards. Behaviour, 148, 12151238.Google Scholar
Cooper, W. E. Jr. (2011b). Pursuit deterrence, predations risk, and escape in the lizard Callisaurus draconoides. Behavioral Ecology and Sociobiology, 65, 18331841.Google Scholar
Cooper, W. E. Jr. (2011c). Influence of some potential predation risk factors and interaction between predation risk and cost of fleeing on escape by the lizard Sceloporus virgatus. Ethology, 117, 620629.Google Scholar
Cooper, W. E. Jr. (2012). Risk factors affecting escape behavior by the Jamaican lizard Anolis lineatopus (Polychrotidae, Squamata). Caribbean Journal of Science, 46, 112.Google Scholar
Cooper, W. E. Jr. & Avalos, A. (2010). Predation risk, escape and refuge use by mountain spiny lizards (Sceloporus jarrovii). Amphibia-Reptilia, 31, 363373.Google Scholar
Cooper, W. E. Jr. & Blumstein, D. T. (2014). Starting distance, alert distance and flushing early challenge economic escape theory: New proposed effects on costs of fleeing and not fleeing. Behavioral Ecology, 25, 4452.Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2007). Optimal flight initiation distance. Journal of Theoretical Biology, 244, 5967.Google Scholar
Cooper, W. E. Jr. & Pérez-Mellado, V. (2011). Escape by the Balearic lizard (Podarcis lilfordi) is affected by elevation of an approaching predator, but not by some other potential predation risk factors. Acta Herpetologica, 6, 247259.Google Scholar
Cooper, W. E. Jr. & Pérez-Mellado, V. (2012). Historical influence of predation pressure on escape behavior by Podarcis lizards in the Balearic islands. Biological Journal of the Linnaean Society, 107, 254268Google Scholar
Cooper, W. E. Jr. & Sherbrooke, W. C. (2010). Crypsis influences escape decisions in the round-tailed horned lizard (Phrynosoma modestusm). Canadian Journal of Zoology, 88, 10031010.Google Scholar
Cooper, W. E. Jr. & Sherbrooke, W. C. (2012). Choosing between a rock and a hard place: Camouflage in the round-tailed horned lizard Phrynosoma modestum. Current Zoology, 58, 541548.Google Scholar
Cooper, W. E. Jr. & Sherbrooke, W. C. (2013a). Effects of recent movement, starting distance and other risk factors on escape behaviour by two phrynosomatid lizards. Behaviour, 150, 447469.Google Scholar
Cooper, W. E. Jr. & Sherbrooke, W. C. (2013b). Risk and cost of immobility in the presence of an immobile predator: effects on latency to flee or approach food or a potential mate. Behavioral Ecology and Sociobiology, 67, 583592.Google Scholar
Cooper, W. E. & Stankowich, T. (2010). Prey or predator? Body size of an approaching animal affects decisions to attack or escape. Behavioral Ecology, 21, 12781284.Google Scholar
Cooper, W. E. Jr. & Vitt, L. J. (1985). Blue tails and autotomy: Enhancement of predation avoidance in juvenile skinks. Zeitschrift fur Tierpsychologie, 70, 265276.Google Scholar
Cooper, W. E. Jr. & Vitt, L. J. (1991). Influence of detectability and ability to escape on natural selection of conspicuous autotomous defenses. Canadian Journal of Zoology, 69, 757764.Google Scholar
Cooper, W. E. Jr. & Wilson, D. S. (2007). Beyond optimal escape theory: Microhabitats as well as predation risk affect escape and refuge use by the phrynosomatid lizard Sceloporus virgatus. Behaviour, 144, 12351254.Google Scholar
Cooper, W. E. Jr. & Wilson, D. S. (2008). How to stay alive after losing your tail. Behaviour, 145, 10851089.Google Scholar
Cooper, W. E. Jr., Vitt, L. J., Hedges, R. & Huey, R. B. (1990). Locomotor impairment and defense in gravid lizards (Eumeces laticeps): Behavioral shift in activity may offset costs of reproduction in an active forager. Behavioral Ecology and Sociobiology, 27, 153157.Google Scholar
Cooper, W. E. Jr., Pérez-Mellado, V., Baird, T. et al. (2003). Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire whiptail lizards, Cnemidophorus murinus. Behavioral Ecology, 14, 288293.Google Scholar
Cooper, W. E. Jr., Perez-Mellado, V. & Hawlena, D. (2006). Magnitude of food reward affects escape behavior and acceptable risk in Balearic lizards, Podarcis lilfordi. Behavioral Ecology, 17, 554559.Google Scholar
Cooper, W. E. Jr., Perez-Mellado, V. & Hawlena, D. (2007). Number, speeds, and approach paths of predators affect escape behavior by the Balearic lizard, Podarcis lilfordi. Journal of Herpetology, 41, 197204.Google Scholar
Cooper, W. E. Jr., Attum, O. & Kingsbury, B. (2008). Escape behaviors and flight initiation distance in the common water snake Nerodia sipedon. Journal of Herpetology, 42, 493500.Google Scholar
Cooper, W. E. Jr., Wilson, D. S. & Smith, G. R. (2009a). Sex, reproductive status, and cost of tail autotomy via decreased running speed. Ethology, 115, 713.Google Scholar
Cooper, W. E. Jr., Hawlena, D. & Pérez-Mellado, V. (2009b). Interactive effect of starting distance and approach speed on escape challenges theory. Behavioral Ecology, 20, 542546.Google Scholar
Cooper, W. E. Jr., Hawlena, D. & Pérez-Mellado, V. (2009c). Islet tameness: Escape behavior and refuge use in populations of the Balearic lizard (Podarcis lilfordi) exposed to differing predation pressure. Canadian Journal of Zoology, 87, 912919.Google Scholar
Cooper, W. E. Jr., López, P., Martín, J. & Pérez-Mellado, V. (2012). Latency to flee from an immobile predator: Effects of risk and cost of immobility for the prey. Behavioral Ecology, 23, 790797.Google Scholar
Eifler, D. (2001). Egernia cunninghami (Cunningham’s skink). Escape behavior. Herpetological Review, 32, 40.Google Scholar
Fitch, H. S. (1963). Natural history of the racer Coluber constrictor. University of Kansas Publications, Museum of Natural History, 15, 351468.Google Scholar
Fitch, H. S. (1965). An ecological study of the garter snake, Thamnophis sirtalis. University of Kansas Publications, Museum of Natural History, 15, 493564.Google Scholar
Hawlena, D., Boochnik, R., Abramsky, Z. & Bouskila, A. (2006). Blue tail and striped body: Why do lizards change their infant costume when growing up? Behavioral Ecology, 17, 889896.Google Scholar
Hawlena, D., Perez-Mellado, V. & Cooper, W. E. Jr. (2009). Morphological traits affect escape behavior of the Balearic lizards (Podarcis lilfordi). Amphibia-Reptilia, 30, 587592.Google Scholar
Hertz, P. E., Huey, R. B. & Nevo, E. (1983). Homage to Santa Anita: Thermal sensitivity of sprint speed in agamid lizards. Evolution, 37, 10751084.Google Scholar
Holley, A. J. F. (1993). Do brown hares signal foxes? Ethology, 94, 2130.Google Scholar
Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia, Vol. 12, Physiology C: Physiological Ecology. London: Academic Press, pp. 2591.Google Scholar
Jackson, J. F., Ingram, W. III. & Campbell, H. W. (1976). The dorsal pigmentation as an antipredator strategy: a multivariate approach. American Naturalist, 110, 10291053.Google Scholar
Kacoliris, F. P., Gurrero, E., Molinari, A., Moyano, B. & Rafael, A. (2009). Run to shelter or bury into the sand? Factors affecting escape grahamÿr decisions in Argentinian sand dun lizards (Liolaemus multimaculatus). Herpetological Journal, 19, 213216.Google Scholar
Kelt, D. A., Nabors, L. K. & Forister, M. L. (2002). Size-specific differences in tail loss and escape behavior in Liolaemus nigromaculatus. Journal of Herpetology, 36, 322325.Google Scholar
Kramer, D. L. & Bonenfant, M. (1997). Direction of predator approach and the decision to flee to a refuge. Animal Behaviour, 54, 289295.Google Scholar
Lailvaux, S. P., Alexander, G. J. & Whiting, M. J. (2003). Sex-based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius. Physiological and Biochemical Zoology, 76, 511521.Google Scholar
Layne, J. R. & Ford, N. B. (1984). Flight distance of the queen snake, Regina septemvittata. Journal of Herpetology, 18, 496498.Google Scholar
Lima, S. L. & Bednekoff, P. A. (1999). Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. American Naturalist, 153, 649659.Google Scholar
Llewelyn, J., Webb, J. K. & Shine, R. (2010). Flexible defense: context-dependent antipredator responses of two species of Australian elapid snakes. Herpetologica, 66, 111.Google Scholar
López, P., Hawlena, D., Polo, V., Amo, L. & Martín, J. (2005). Sources of shy–bold variations in antipredator grahamÿr of male Iberian rock lizards. Animal Behaviour, 69, 19.Google Scholar
Losos, J. B. & Irschick, D. J. (1996). The effect of perch diameter on escape grahamÿr of Anolis lizards: Laboratory predictions and field tests. Animal Behaviour, 51, 593602.Google Scholar
Losos, J. B., Mouton, P. L. F. N., Bickel, R., Cornelius, I. & Ruddock, L. (2002). The effect of body armature on escape behaviour in cordylid lizards. Animal Behaviour, 64, 313321.Google Scholar
Maritz, B. (2012). To run or hide? Escape behavior in a cryptic African snake. African Zoology, 47, 270274.Google Scholar
Martín, J. & López, P. (1999). Nuptial coloration and mate-guarding affect escape decisions of male lizards, Psammodromus algirus. Ethology, 105, 439447.Google Scholar
Martín, J., López, P. & Cooper, W. E. Jr. (2003). When to come out from a refuge: balancing predation risk and foraging opportunities in an alpine lizard. Ethology, 109, 7787.Google Scholar
Martín, J., Luque-Larena, J. J. & López, P. (2009). When to run from an ambush predator: balancing crypsis benefits with costs of fleeing in lizards. Animal Behaviour, 78, 10111018.Google Scholar
Mattingly, W. B. & Jayne, B. C. (2005). The choice of arboreal escape paths and its consequences for the locomotor behaviour of four species of Anolis lizards. Animal Behaviour, 70, 12391250.Google Scholar
McConnachie, S. & Whiting, M. J. (2003). Costs associated with tail autotomy in an ambush foraging lizard, Cordylus melanotus melanotus. African Zoology, 38, 5765.Google Scholar
Melville, J. & Swain, R. (2003). Evolutionary correlations between escape behaviour and performance ability in eight species of snow skinks from Tasmania (Niveoscincus: Lygosominae). Journal of Zoology, 261, 7989.Google Scholar
Olsson, M., Shine, R. & Bak-Olsson, E. (2000). Locomotor impairment of gravid lizards: is the burden physiological? Journal of Evolutionary Biology, 13, 263268.Google Scholar
Owen-Smith, N. & Mills, M. G. L. (2008). Predator–prey size relationships in an African large-mammal food web. Journal of Animal Ecology, 77, 173183.Google Scholar
Pérez-Cembranos, A., Pérez-Mellado, V. & Cooper, W. E. (2013). Predation risk and opportunity cost of fleeing while foraging on plants influences escape decisions of and insular lizard. Ethology, 119, 522530.Google Scholar
Pough, F. H. (1976). Multiple cryptic effects of crossbanded and ringed patterns of snakes. Copeia, 1976, 834836.Google Scholar
Ruxton, G. D., Sheratt, T. N. & Speed, M. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford: Oxford University Press.Google Scholar
Schall, J. J. & Pianka, E. R. (1980). Evolution of escape behavior diversity. American Naturalist, 115, 551556.Google Scholar
Schneider, K. R., Parmerlee, J. S. Jr. & Powell, R. (2000). Escape behavior of Anolis lizards from the Sierra de Baoruco, Hispaniola. Caribbean Journal of Science, 36, 321323.Google Scholar
Schulte, J. A., Losos, J., Cruz, F. B. & Nunez, H. (2004). The relarionship between morphology, escape behavior and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae: Liolaemini). Journal of Evolutionary Biology, 17, 408420.Google Scholar
Schwarzkopf, L. & Shine, R. (1992). Costs of reproduction in lizards: escape tactics and susceptibility to predation. Behavioral Ecology and Sociobiology, 31, 1725.Google Scholar
Scribner, S. J. & Weatherhead, P. J. (1995). Locomotion and antipredator behaviour in three species of aquatic snakes. Canadian Journal of Zoology, 73, 321329.Google Scholar
Shallenberger, E. W. (1970). Tameness in Insular Animals: a Comparison of Approach Distances of Insular and Mainland Iguanid Lizards. Los Angeles: University of California at Los Angeles.Google Scholar
Shine, R. (1980). “Costs” of reproduction in reptiles. Oecologia, 46, 92100.Google Scholar
Shine, R., Sun, L.-X., Fitzgerald, M. & Kearney, M. (2002). Antipredator responses of free-ranging pit vipers (Gloydius shedaoensis, Viperidae). Copeia, 2002, 843850.Google Scholar
Shine, R., Phillips, B., Waye, H. & Mason, R. T. (2003a). Behavioral shifts associated with reproduction in garter snakes. Behavioral Ecology, 14, 251256.Google Scholar
Shine, R., Phillips, B., Waye, H. & Mason, R. T. (2003b). Small-scale geographic variation in antipredator tactics of garter snakes. Herpetologica, 59, 333339.Google Scholar
Shine, R., Bonnett, X. & Cogger, H. C. (2003c). Antipredator tactics of amphibious sea snakes (Serpentes, Laticaudidae). Ethology, 109, 533542.Google Scholar
Smith, G. R. (1996). Correlates of approach distance in the striped plateau lizard (Sceloporus virgatus). Herpetological Journal, 6, 5658.Google Scholar
Stankowich, T. & Blumstein, D. T. (2005). Fear in animals: a meta-analysis and review of risk assessment. Proceedings of the Royal Society of London, Series B, Biological Sciences, 272, 26272634.Google Scholar
Stankowich, T. & Coss, R. G. (2007). Effects of risk assessment, predator behavior, and habitat on escape behavior in Columbian black-tailed deer. Behavioral Ecology, 18, 358367.Google Scholar
Stapley, J. & Keogh, J. S. (2004). Exploratory and antipredator behaviours differ between territorial and nonterritorial male lizards. Animal Behaviour, 68, 841846.Google Scholar
Stiller, R. B. & McBrayer, L. B. (2013). The ontogeny of escape behavior, locomotor performance, and the hind limb in Sceloporus woodi. Zoology, 116, 175181.Google Scholar
Thaker, M., Lima, S. L. & Hews, D. K. (2009). Alternative antipredatory tactics in tree lizard morphs: hormonal and behavioural responses to a predator encounter. Animal Behaviour, 77, 395401.Google Scholar
Ward, J. P. & Hopkins, W. D. (1993). Primate laterality: current behavioral evidence of primate asymmetries. New York: Springer-Verlag.Google Scholar
Weatherhead, P. J. & Robertson, I. C. (1992). Thermal constraints on swimming performance and escape response of northern water snakes (Nerodia sipedon). Canadian Journal of Zoology, 70, 9498.Google Scholar
Whitaker, P. B. & Shine, R. (1999). Responses of free-ranging brownsnakes (Pseudonaja textilis: Elapidae). Wildlife Research, 26, 689704.Google Scholar
Williams, E. E. (1983). Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. In Lizard Ecology: Studies of a Model Organism. Cambridge: Harvard University Press, pp. 326370.Google Scholar
Williams, D. M., Samia, D. S. M., Cooper, W. E. Jr. & Blumstein, D. T. (2014). The flush early and avoid the rush hypothesis holds after accounting for spontaneous behavior. Behavioral Ecology, 25, 11361147.Google Scholar
Zani, P. A., Jones, T. D., Neuhaus, R. A. & Milgrom, J. E. (2009). Effect of refuge distance on escape behavior of side-blotched lizards (Uta stansburiana). Canadian Journal of Zoology, 87, 407414.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×