Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T17:58:19.182Z Has data issue: false hasContentIssue false

6 - Minimizing bias in meta-analysis

Published online by Cambridge University Press:  05 June 2012

Paul D. Ellis
Affiliation:
Hong Kong Polytechnic University
Get access

Summary

The appearance of misleading meta-analysis is not surprising considering the existence of publication bias and the many other biases that may be introduced in the process of locating, selecting, and combining studies.

~ Matthias Egger et al. (1997: 629)

Four ways to ruin a perfectly good meta-analysis

In science, the large-scale randomized controlled trial is considered the gold standard for estimating effects. But as such trials are expensive and time consuming, new research typically begins with small-scale studies which may be subsequently aggregated using meta-analysis. Relatively late in the game a randomized controlled trial may be run to provide the most definitive evidence on the subject, but in many cases the meta-analysis, for better or worse, will provide the last word on a subject. In those relatively rare instances where a large-scale randomized trial follows a meta-analysis, an opportunity emerges to compare the results obtained by the two methods. Most of the time the results are found to be congruent (Cappelleri et al. 1996; Villar and Carroli 1995). But there have been notable exceptions. In the medical field LeLorier et al. (1997) matched twelve large randomized controlled trials with nineteen meta-analyses and found several instances where a statistically significant result obtained by one method was paired with a nonsignificant result obtained by the other. Given the way in which decisions about new treatments are made in medicine, these authors concluded that if there had been no randomized controlled trials, the meta-analyses would have led to the adoption of an ineffective treatment in 32% of cases and to the rejection of a useful treatment in 33% of cases.

Type
Chapter
Information
The Essential Guide to Effect Sizes
Statistical Power, Meta-Analysis, and the Interpretation of Research Results
, pp. 116 - 133
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×