Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T00:35:07.034Z Has data issue: false hasContentIssue false

1 - The Evolution of Fishes through Geological Time

Published online by Cambridge University Press:  31 December 2018

Zerina Johanson
Affiliation:
Natural History Museum, London
Charlie Underwood
Affiliation:
Birkbeck, University of London
Martha Richter
Affiliation:
Natural History Museum, London
Get access

Summary

Fishes, here defined as ‘non-digitate aquatic vertebrates’, first appear in the Cambrian Period at least 520 million years ago (Ma). They are first represented by fusiform taxa lacking well-developed fins and dermal bone covering. The first fishes to bear external dermal bones forming a protective and supporting framework appear in the mid-Ordovician, about 460 Ma, represented by fusiform heterostracans and other associated taxa, found in Australia and South America. By the late Ordovician, fishes were widespread across the globe and the first jawed vertebrates, gnathostomes, had possibly appeared. The oldest gnathostome remains are enigmatic small placoid-like scales with chondrichthyan affinity, but cannot be resolved without more complete material. The oldest jawed vertebrates, both placoderms and stem chondrichthyans (‘acanthodians’), come from what is today China, with articulated diverse remains of placoderms and the first osteichthyans in the upper Silurian (Ludlow) of Yunnan. These forms include maxillate placoderms like Entelognathus and Qilinyu as well as heavily spined sarcopterygian (osteichthyan) fishes like Guiyu. At the start of the Early Devonian we see a new placoderm fish fauna emerging globally which has little resemblance to the late Silurian taxa of China, with some five main clades of placoderms and a few smaller groups of uncertain affinity. Osteichthyans diversified into two major clades, one of which, the Actinopterygii, or ray-fins, were represented by early forms with rhombic scales and fixed cheek-mouth complexes, loosely termed ‘paleoniscoids’. The Sarcopterygii, which include Actinistia (coelacanths), Dipnomorpha (dipnoans and porolepiforms), Onychodontiformes, and stem tetrapods (Tetrapodomorpha), had all appeared by the end of the early Devonian. Since the end of the Palaeozoic the non-tetrapod sarcopterygians are represented only by lungfishes and coelacanths. Chondrichthyans are known from isolated teeth, scales, and spines in the early Devonian with one articulated fish from the Emsian. By the late Devonian chondrichthyans had radiated into many families, including the first stem holocephalans, like Cladoselache. The Carboniferous saw a huge radiation of chondrichthyans and actinopterygians. Neopterygians appeared by the late Carboniferous with the first teleosteans by the late Triassic. Since the Mesozoic percomorphans especially have diversified to comprise the great majority of all fish families extant today, represented by some 29,000 spp. of teleosteans. Chondrichthyans also underwent a secondary radiation when batoids and modern sharks appeared in the Jurassic. Today there are some 1,200 species of living chondrichthyans.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanassieva, OB. 1992. Some peculiarities of osteostracan ecology. In: Mark-Kurik, E, editor. Fossil Fishes as Living Animals. Estonia: Academy of Sciences. pp. 6170.Google Scholar
Ahlberg, PE. 1995. Elginerpeton pancheni and the earliest tetrapod clade. Nature 373:420425.Google Scholar
Ahlberg, PE, Friedman, M, Blom, H. 2005. New light on the earliest known tetrapod jaw. J Vert Paleo 25:720724.CrossRefGoogle Scholar
Ahlberg, PE, Johanson, Z, Smith, MM. 2006. Developmental plasticity and disparity in early dipnoan (lungfish) dentitions. Evol Dev 8:331349.Google Scholar
Ahlberg, PE, Trewin, NH. 1994. The postcranial skeleton of the Middle Devonian lungfish Dipterus valenciennesi. Trans R Soc Edinburgh 85:159175.CrossRefGoogle Scholar
Ahlberg, PE, Trinajstic, K, Johanson, Z, Long, JA. 2009. Pelvic claspers confirm chondrichthyan-like internal fertilisation in arthrodires. Nature 459:888889.Google Scholar
Andreev, P, Coates, MI, Karatajute-Talimaa, V, Shelton, RM, Cooper, PR, Wang, N-Z, Sansom, IJ. 2016. The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade. PeerJ DOI: 10.7717/peerj.1850.CrossRefGoogle Scholar
Andreev, P, Coates, MI, Shelton, R, Cooper, P, Smith, P, Sansom, I. 2015. Upper Ordovician chondrichthyan-like scales from North America. Palaeontology 58:691704.CrossRefGoogle Scholar
Andrews, M, Long, J, Ahlberg, P, Barwick, R, Campbell, KSW. 2006. The structure of the sarcopterygian Onychodus jandemarrai n. sp. from Gogo, Western Australia: With a functional interpretation of the skeleton. Trans R Soc Edinburgh 96:197307.Google Scholar
Andrews, SM, Westoll, TS. 1970a. The postcranial skeleton of Eusthenopteron foordi Whiteaves. Trans R Soc Edinburgh 68:207329.CrossRefGoogle Scholar
Andrews, SM, Westoll, TS. 1970b. The postcranial skeleton of rhipidistian fishes excluding Eusthenopteron. Trans R Soc Edinburgh 68:391489.CrossRefGoogle Scholar
Arratia, G. 2004. Mesozoic halecostomes and the early radiation of teleosts. In: Arratia, G, Tintori, A, editors. Mesozoic Fishes 3 – Systematics, Paleoenvironments and Biodiversity, München: Verlag Dr. Friedrich Pfeil. pp. 279315.Google Scholar
Arratia, G. 2013. Morphology, taxonomy, and phylogeny of Triassic pholidophorid fishes (Actinopterygii, Teleostei). J Vert Paleo 33 (Suppl. 6) 13:1138.Google Scholar
Arratia, G, Cloutier, R. 1996. Reassesment of the morphology of Cheirolepis canadensis (Actinopterygii). In: Schultze, HP, Cloutier, R, editors. Devonian Fishes and Plants of Miguasha, Quebec, Canada, München: Verlag Dr. Friedrich Pfeil. pp. 165–97.Google Scholar
Arsenault, M, Desbiens, S, Janvier, P, Kerr, J. 2004. New data on the soft tissues and external morphology of the antiarch Bothriolepis canadensis (Whiteaves, 1880), from the Upper Devonian of Miguashua, Quebec. In: Arratia, G, Wilson, MVH, Cloutier, R, editors. Recent Advances in the Origin and Early Radiation of Vertebrates. Munich: Verlag Dr. Friedrich Pfeil. pp. 439454.Google Scholar
Basden, AM, Young, GC. 2001. A primitive actinopterygian neurocranium from the Early Devonian of southeastern Australia. J Vert Paleo 21:754766.Google Scholar
Basden, AM, Young, GC, Coates, MI, Ritchie, A. 2000. The most primitive osteichthyan braincase? Nature 403: 185188.Google Scholar
Bean, LB. 2006. The leptolepid fish Cavenderichthys talbragarensis (Woodward, 1895) from the Talbragar fish bed (Late Jurassic) near Gulgong, New South Wales. Rec Western Australian Mus 23:4376.CrossRefGoogle Scholar
Benton, MJ, Zhang, Q, Hu, S, Chen, Z-Q, Wen, W, Liu, J, Huang, J, Zhou, C, Xie, T, Tong, J, Choo, B. 2013. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth Sci Rev 125:199243.Google Scholar
Bertozzi, T, Lee, MSY, Donnellan, SC. 2016. Stingray diversification across the end-Cretaceous extinctions. Mem Mus Victoria 74:379390.Google Scholar
Blieck, A. 1984. Les Hétérostracés Pteraspidiformes, Agnathes du Silurien-Dèvonien du Continent nord-atlantique et des blocs avoisinants: révision systématique, phylogénie, biostratigraphie, biogéographie. 199pp. Cahiers de Paléontologie (Vertébrés), Editions du CNRS, Paris.Google Scholar
Blieck A, Heintz N. 1979. The heterostracan faunas in the Red Bay Group (Lower Devonian) of Spitsbergen and their biostratigraphical significance: A review including new data. Bull Geol Soc France (7th ser) 21:169168CrossRefGoogle Scholar
Blieck, A, Karatajùtë-Talimaa, VN, Mark-Kurik, E. 2002. Upper Silurian and Devonian heterostracan pteraspidomorphs (Vertebrata) from Severnaya Zemlya (Russia): A preliminary report with biogeographical and biostratigraphical implications. Geodiversitas 24:805820.Google Scholar
Blom, H, Marss, T. 2010. The interrelationships and evolutionary history of anaspid fishes. In: Elliott, DK, Maisey, JG, Yu, X, Miao, D, editors. Morphology, Phylogeny and Palaeogeography of Fossil Fishes – Honouring Meemann Chang, München: Verlag Dr. Fredrich Pfeil. pp 4558.Google Scholar
Blom, H, Märss, T, Miller, CG. 2002. Silurian and lowermost Devonian birkeniid anaspids from the Northern Hemisphere. Trans R Soc Edinburgh: Earth Sci 92:263323.Google Scholar
Boisvert, CA. 2005. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature 438:11451147.Google Scholar
Boisvert, CA. 2009. The humerus of Panderichthys in three dimensions and its significance in the context of the fish–tetrapod transition. Acta Zool 90:297305.Google Scholar
Boisvert, CA, Mark-Kurik, E, Ahlberg, PE. 2008. The pectoral fin of Panderichthys and the origin of digits. Nature 456(4):636638.Google Scholar
Botella, H, Blom, H, Dorka, M, Ahlberg, PE, Janvier, P. 2007. Jaws and teeth of the earliest bony fishes. Nature 448:583586.Google Scholar
Brazeau, MD. 2009. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature 457:305308.Google Scholar
Brazeau, MD, Ahlberg, PE. 2006. Tetrapod-like middle ear architecture in a Devonian fish. Nature 439:318321.CrossRefGoogle Scholar
Brazeau, MD, Friedman, M. 2014. The characters of Palaeozoic jawed vertebrates. Zool J Linn Soc 170:779821.CrossRefGoogle ScholarPubMed
Brazeau, MD, Friedman, M. 2015. The origin and early phylogenetic history of jawed vertebrates. Nature 520:490497.Google Scholar
Burrow, CJ, Davidson, RG, den Blaauwen, JL, Newman, MJ. 2015. Revision of Climatius reticulatus Agassiz, 1844 (Acanthodii, Climatiidae), from the Lower Devonian of Scotland, based on new histological and morphological data. J Vert Paleo 35:e913421.Google Scholar
Burrow, CJ, den Blaauwen, JL, Newman, M, Davidson, R. 2016. The diplacanthid fishes (Acanthodii, Diplacanthiformes, Diplacanthidae) from the Middle Devonian of Scotland. Palaeo Electron 19.1(10A):183.Google Scholar
Burrow, CJ, Newman, MJ, Davidson, RG, den Blaauwen, JL. 2013. Redescription of Parexus recurvus, an Early Devonian acanthodian from the Midland Valley of Scotland, Alcheringa 37:392414.Google Scholar
Burrow, CJ, Rudkin, D. 2014 Oldest near-complete acanthodian: The first vertebrate from the Silurian Bertie Formation Konservat-Lagerstätte, Ontario. PLoS ONE 9(8):e104171.Google Scholar
Burrow, CJ. Young, GC. 2004. Diplacanthid acanthodians from Aztec Siltstone (late Middle Devonian) of southern Victoria Land, Antarctica. Foss Strata 50:2343.Google Scholar
Campbell, KSW, Barwick, RE. 1983. Early evolution of Dipnoan dentitions and a new genus Speonesydrion. Mem Assoc Australasian Palaeo 1:1749.Google Scholar
Campbell, KSW, Barwick, RE. 1988a. Geological and palaeontological information and phylogenetic hypotheses. Geol Mag 125:207227.Google Scholar
Campbell, KSW, Barwick, RE. 1988b. Uranolophus: a reappraisal of a primitive dipnoan. Mem Assoc Australasian Palaeo 7:87144.Google Scholar
Campbell, KSW, Phuc, LD. 1983. A Late Permian actinopterygian from Australia. Palaeontology 26:3370.Google Scholar
Carr, R, Johanson, Z, Ritchie, A. 2009. The phyllolepid placoderm Cowralepis mclachlani: Insights into the evolution of feeding mechanisms in jawed vertebrates. J Morph 270:775804.Google Scholar
Cavin, L, Suteethorn, V, Buffetaut, E, Tong, H. 2007. A new Thai Mesozoic lungfish (Sarcopterygii, Dipnoi) with an insight into post-Palaeozoic dipnoan evolution. Zool J Linn Soc 149:141177.Google Scholar
Challands, T, den Blaauwen, J. 2016. A redescription of the Middle Devonian dipnoan Pentlandia macroptera Traquair, 1889, and an assessment of the Phaneropleuridae. Zool J Linn Soc 47. DOI: 10.1111/zoj.12491Google Scholar
Chang, MM. 1982. The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, south-western China. University of Stockholm and Section of Palaeozoology, Swedish Museum of Natural History.Google Scholar
Chang, MM, Zhu, M. 1993. A new Middle Devonian osteolepid from Qujing, Yunnan. Mem Assoc Austral Palaeonts 15:183198.Google Scholar
Chen, D, Blom, H, Sanchez, S, Tafforeau, P, Ahlberg, PE. 2016. The stem osteichthyan Andreolepis and the origin of tooth replacement. Nature 539:237241.CrossRefGoogle ScholarPubMed
Chen, D, Janvier, P, Ahlberg, PE, Blom, H. 2012. Scale morphology and squamation of the Late Silurian osteichthyan Andreolepis from Gotland, Sweden. Hist Biol 24:411423.CrossRefGoogle Scholar
Chevrinais, M, Johanson, Z, Trinajstic, K, Long, JA, Morel, C, Renaud, CB, Cloutier, R. 2018. Evolution of vertebrate postcranial complexity: axial skeleton regionalisation and paired appendages in a Devonian jawless fish. Palaeontology 1–18. DOI: 10.1111/pala.12379.Google Scholar
Choo, B. 2009. A basal actinopterygian fish from the Middle Devonian Bunga Beds of New South Wales, Australia. Proc Linn Soc New South Wales 130:3746.Google Scholar
Choo, B. 2015. A new species of the Devonian actinopterygian Moythomasia from Bergisch Gladbach, Germany, and fresh observations on M. durgaringa from the Gogo Formation of Western Australia. J Vert Paleo 35:e952817.Google Scholar
Choo, B, Zhu, M, Qingming, Qu, Jia, L, Zhao, W. 2017. A new osteichthyan from the late Silurian of Yunnan, China. PLoS ONE 12(3):e0170929.Google Scholar
Choo, B, Zhu, M, Zhao, W, Jia, L, Zhu, Y. 2014. The largest Silurian vertebrate and its palaeoecological implications. Sci Rep 4:5242.Google Scholar
Clack, JA. 2007a. Devonian climate change, breathing, and the origin of the tetrapod stem group. Int Comp Biol 47:510523.Google Scholar
Clack, JA. 2007b. Devonian tetrapod trackways and trackmakers; a review of the fossils and footprints. Palaeogeog Palaeoclim Palaeoecol 130:227250.Google Scholar
Clack, JA. 2012. Gaining Ground: The Origin and Evolution of Tetrapods. Bloomington: Indiana University Press. 544 p.Google Scholar
Clack, JA, Sharp, EL, Long, JA. 2011. The Fossil Record of Lungfishes. In: Jørgensen, JM, Joss, J, editors. The Biology of Lungfishes. Enfield, USA: Science Publishers. pp. 142.Google Scholar
Clement, AM. 2012. A new species of long-snouted lungfish from the Late Devonian of Australia, and its functional and biogeographical implications. Palaeontology 55:5171.Google Scholar
Clement, AM, Long, JA. 2010a. Air-breathing adaptation in a marine Devonian lungfish. Biol Lett 6:509512.Google Scholar
Clement, AM, Long, JA. 2010b. Xeradipterus hatcheri, a new dipnoan from the Late Devonian (Frasnian) Gogo Formation, Western Australia, and other new holodontid material. J Vert Paleo 30:681695.Google Scholar
Clement, AM, Long, JA, Tafforeau, P, Ahlberg, PE. 2016. The dipnoan buccal pump reconstructed in 3D and implications for air breathing in Devonian lungfishes. Paleobiology 42: 289304.Google Scholar
Clement, A, King, B, Giles, S, Choo, B, Ahlberg, PE, Young, GC, Long, JA. Neurocranial anatomy of an enigmatic Early Devonian 1 fish sheds light on early osteichthyan evolution. eLife 2018;7:e34349.Google Scholar
Cloutier, R, Ahlberg, PE. 1996. Morphology, characters and interrelationships of basal Sarcopterygians. In: Stiassny, MLJ, Parenti, LR, Johnson, GD, editors. Interrelationships of Fishes. San Diego: Academic Press. pp. 445479.Google Scholar
Cloutier, R, Arratia, G. 2004. Early diversification of actinopterygians. In: Arratia, G, Wilson, MVH, Cloutier, R, editors. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil. pp. 217270.Google Scholar
Cloutier, R, Schultze, HP, 1996. Porolepiform fishes (Sarcopterygii). In: Schultze, HP, Cloutier, R, editors. Devonain Fishes and Planst of Miguashua, Quebec, Canada. München: Verlag Dr. Friedrich Pfeil. pp. 248270Google Scholar
Coates, MI, Gess, RW, Finarelli, JA, Criswell, KE, Tietjen, K. 2017. A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature 541:208211.Google Scholar
Coates, MI, Sequeira, S. 2001. A new stethacanthid chondrichthyan from the Lower Carboniferous of Bearsden, Scotland. J Vert Paleo 21:438459.Google Scholar
Coates, MI, Finarelli, JA, SWansom, IJ, Andreev, PS, Criswell, KE, Tietjen, K, Rivers, ML, La Riviere, PJ. 2018. An early chondrichthyan and the evolutionary assembly of a shark body plan. Proc R Soc B 285: 20172418.Google Scholar
Conway Morris, S, Caron, JB. 2014. A primitive fish from the Cambrian of North America. Nature 512:419422.CrossRefGoogle Scholar
Criswell, KE. 2015. The comparative osteology and phylogenetic relationships of African and South American lungfishes (Sarcopterygii: Dipnoi). Zool J Linn Soc 174:801858.Google Scholar
Daeschler, EB, Shubin, N, Jenkins, FAJ. 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440:757763.Google Scholar
Davis, JW. 1887. The fossil fishes of the chalk in Mt. Lebanon, in Syria. Sci Trans R Dublin Soc 2:457637.Google Scholar
den Blaauwen, JL, Barwick, RE, Campbell, KSW. 2005. Structure and function of the tooth plates of the Devonian lungfish Dipterus valenciennesi from Caithness and the Orkney Islands. Rec Western Austral Mus 23:91113.Google Scholar
Denison, RH. 1958. Early Devonian fishes from Utah. III. Arthrodira. Fieldiana: Geol 11:461551.Google Scholar
Denison, RH. 1968a. Early Devonian lungfishes from Wyoming, Utah, and Idaho. Fieldiana: Geol 17:353413.Google Scholar
Denison, RH. 1968b. The evolutionary significance of the earliest known lungfish, Uranolophus. In: Orvig, T, editor. Current Problems in Lower Vertebrate Phylogeny, Nobel Symposium 4. Stockholm: Almqvist and Wiksell. pp. 247257.Google Scholar
Denison, RH. 1978. Placodermi. In: Schultze, HP, editor. Handbook of Paleoichthyology. Stuttgart: Gustav Fischer Verlag. p. 2.Google Scholar
Denison, RH. 1979. Acanthodii. In: Schultze, HP, editor. Handbook of Paleoichthyology, part 5. Stuttgart: Gustav Fischer Verlag. pp. 62.Google Scholar
Dunkle, D, Schaeffer, B. 1973. Tegeolepis clarki (Newberry), a palaeonisciform from the Upper Devonian Ohio Shale. Palaeont Abt A 143A:151158.Google Scholar
Dupret, V. 2010. Revision of the genus Kujdanowiaspis Stensiö, 1942 (Placodermi, Arthrodira, ‘Actinolepida’) from the Lower Devonian of Podolia (Ukraine). Geodiversitas 32:563.Google Scholar
Dupret, V, Sanchez, S, Goujet, D, Ahlberg, PE. 2017. The internal cranial anatomy of Romundina stellina Ørvig, 1975 (Vertebrata, Placodermi, Acanthothoraci) and the origin of jawed vertebrates. PLoS ONE 12:147.Google Scholar
Dupret, V, Sanchez, S, Goujet, D, Tafforeau, P, Ahlberg, PE. 2014. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature 507:500503.Google Scholar
Dupret, V, Zhu, M. 2008. The earliest phyllolepid (Placodermi, Arthrodira), Gavinaspis convergens, from the late Lochkovian (Lower Devonian) of Yunnan, South China. Geol Mag 145:257278.CrossRefGoogle Scholar
Dutel, H, Herrel, A, Clément, G, Herbin, M. 2013. A reevaluation of the anatomy of the jaw-closing system in the extant coelacanth Latimeria chalumnae. Naturwissenschaften 100:10071022.Google Scholar
Dutel, H, Herrel, A, Clément, G, Herbin, M. 2015. Redescription of the hyoid apparatus and associated musculature in the extant Coelacanth Latimeria chalumnae: Functional implications for feeding. Anat Rec 298:579601.Google Scholar
Ehret, DJ, Macfadden, BJ, Jones, DS, Devries, TJ, Foster, DA, Salas-Gismondi, R. 2012. Origin of the white shark Carcharodon (Lamniformes: Lamnidae) based on recalibration of the Upper Neogene Pisco Formation of Peru. Palaeontology 55:11391153.Google Scholar
Elliott, D. 1987. A reassessment of Astraspis desiderata, the oldest North American vertebrate. Science 237:190.Google Scholar
Everhart, MJ. 2005. Oceans of Kansas. A Natural History of the Western Interior Sea. Bloomington: Indiana University Press.Google Scholar
Ferrón, HG, Botella, H. 2017. Squamation and ecology of thelodonts. PLoS ONE 12:e0172781.Google Scholar
Forey, PL, Ahlberg, PE, Luksevics, E, Zupins, I. 2000. A new coelacanth from the Middle Devonian of Latvia. J Vert Paleo 20:243252.Google Scholar
Fox, RC, Campbell, KSW, Barwick, RE, Long, JA. 1995. A new osteolepiform fish from the Lower Carboniferous Raymond Formation, Drummond Basin, Queensland. Mem Queensl Mus 38:97221.Google Scholar
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proc Nat Acad Sci USA 106:52185223.Google Scholar
Friedman, M, Sallan, LC. 2012. Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55:707742.Google Scholar
Friedman, M, Shimada, K, Martin, L, Everhart, MJ, Liston, J, Maltese, A, Triebold, M. 2010. 100 million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327:990993.Google Scholar
Gagnier, P-Y, Blieck, A, Rodrigo, GS. 1986. First Ordovician vertebrate from South America. Geobios 19:629634.Google Scholar
Gai, Z, Donoghue, PCJ, Zhu, M, Janvier, P, Stampanoni, M. 2011. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy Nature 476.Google Scholar
Gardiner, BG. 1984. Relationships of the palaeoniscoid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonain of Western Australia. Bull Brit Mus Nat Hist (Geol) 37:173428.Google Scholar
Giles, S, Coates, MI, Garwood, RJ, Brazeau, MD, Atwood, R, Johanson, Z, Friedman, M. 2015. Endoskeletal structure in Cheirolepis (Osteichthyes, Actinopterygii), an early ray-finned fish. Palaeontology 58:849870.Google Scholar
Giles, S, Darras, L, Clément, G, Blieck, A, Friedman, M. 2015. An exceptionally preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned fishes. Proc Roy Soc B. 282 20151485.Google Scholar
Ginter, M. 1992. Devonian phoebodont shark teeth. Acta Palaeontologica Polonica 37:5575.Google Scholar
Ginter, M, Hampe, O, Duffin, CJ. 2010. Chondrichthyes. In: Schultze, H-P (ed.), Palaeozoic Elasmobranchii: Teeth. Handbook of Paleoichthyology 3D. Munchen:Verlag Dr. Friedrich Pfeil.Google Scholar
Goujet, D. 1984. Les Poissons Placodermes du Spitsberg. In: Arthrodires Dolichothoraci de la Formation de Wood Bay (Devonien Inferieur). Paris: Cahiers de Paleontologie, CNRS.Google Scholar
Guinot, G, Calvin, L. 2015. ‘Fish’ (Actinopterygii and Elasmobranchii) diversfication patterns through deep time. Biol Rev 91:950981.Google Scholar
Hall, B. 2015. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. Tokyo: Academic Press Elsevier.Google Scholar
Halstead, LB. 1979. Internal anatomy of the polybranchiaspids (Agnatha, Galeaspida). Nature 282:833836.Google Scholar
Hanke, G. 2002. Paucicanthus vanelsti gen. et sp. nov., an Early Devonian (Lochkovian) acanthodian that lacks paired fin-spines. Can J Earth Sci 39:10711083.CrossRefGoogle Scholar
Hanke, GF, Wilson, MVH. 2004. New teleostome fishes and acanthodian systematics. In: Arratia, G, Wilson, MVH, Cloutier, R, editors. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil. pp. 289216.Google Scholar
Harapetian, V, Roelofs, BPA, Trinajstic, KM, Turner, S. 2015. Famennian survivor thelodonts of North and East Gondwana. In: Becker, RT, Königshof, P, Brett, CE, editors. Devonian Climate, Sea Level and Evolutionary Events. London: Geological Society, London, Special Publications DOI:10.1144/SP423.3.Google Scholar
Heinicke, MP, Sander, JM, Blair, Hedges S. 2009. Lungfishes (Dipnoi). In: Hedges, SB, Kumar, S, editors. The Timetree of Life. Oxford: Oxford University Press. pp. 348350.CrossRefGoogle Scholar
Hurley, IM, Muelle, RL, Dunn, KA, Schmidt, EJ, Friedman, M, Ho, RK, Prince, VE, Yang, Z, Thomas, MG, Coates, M. 2007. A new time-scale for ray-finned fish evolution. Proc R Soc B 274:489498.Google Scholar
Janvier, P. 1985. Les Cephalspides du Spitsberg. de Paleontologie, Cahiers, Editions du C. N.R.S., Paris. 244 p.Google Scholar
Janvier, P. 1996. Early Vertebrates. New York: Oxford University Press.Google Scholar
Janvier, P. 2001. Ostracoderms and the shaping of the gnathostome characters. In: Ahlberg, PE, editor. Major Events in Early Vertebrate Evolution. London: Systematics Association. pp. 172186.Google Scholar
Janvier, P. 2003. Vertebrate characters and the Cambrian vertebrates. Comptes Rend Paleoevol 2:523531.Google Scholar
Janvier, P, Desbiens, S, Willett, JA. 2007. New evidence for the controversial ‘lungs’ of the Late Devonian antiarch Bothriolepis canadensis (Whiteaves, 1880) (Placodermi: Antiarcha). J Vert Paleo 27:709710.Google Scholar
Janvier, P, Pradel, A. 2016. Elasmobranchs and their extinct relatives: diversity, relationships, and adaptations through time. In Shadwick, R, Farrell, A, Braune, C, editors. Physiology of Elasmobranch Fishes: Structure and Interaction with Environment 34A:117.Google Scholar
Jarvik, E. 1942. On the structure of the snout of Crossopterygians and lower gnathostomes in general. Zool bidrag från Uppsala 21:235675.Google Scholar
Jarvik, E. 1948. On the morphology and taxonomy of the Middle Devonian osteolepid fishes of Scotland. Kung. Svenska Vetens. Akad., Stockholm, 1-301.Google Scholar
Jessen, HL. 1966. Die Crossopterygier des Oberen Plattenkalkes (Devon) der Bergisch-Gladbach-Paffrather Mulde (Rheinisches Schiefergebirge) unter Berticksichtigung von amerikanischem und europiischem Onychodus-Material. Ark Zool 18:305389.Google Scholar
Jessen, HL. 1980. Lower Devonian porolepiformes from the Canadian Arctic with special reference to Powichthys thorsteinsonni. Palaeont Abt A 167A:180214.Google Scholar
Johanson, Z. 2002. Vascularization of the osteostracan and antiarch (Placodermi) pectoral fin: Similarities, and implications for placoderm relationships. Lethaia 35:169186.Google Scholar
Johanson, Z, Ahlberg, PE. 1998. A complete primitive rhizodont from Australia. Nature 394:569573.Google Scholar
Johanson, Z, Ahlberg, PE. 2001. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodomorpha) from East Gondwana. Trans R Soc: Earth Sci 92:4374.Google Scholar
Johanson, Z, Long, JA, Talent, JA, Janvier, P, Warren, JW. 2006. Oldest coelacanth, from the Early Devonian of Australia. Biol Lett 2:443446.Google Scholar
Johanson, Z, Long, JA, Talent, JA, Janvier, P, Warren, JW. 2007. New onychodontiform (Osteichthyes; Sarcopterygii) from the Lower Devonian of Victoria, Australia. Palaeontology 81:10341046.Google Scholar
Johanson, Z, Trinajstic, K. 2014. Fossilized ontogenies: The contribution of Placoderm ontogeny to our understanding of the evolution of early Gnathostomes. Palaeontology 57:505516.CrossRefGoogle Scholar
Jørgensen, JM, Joss, J. 2011. The Biology of Lungfishes. Enfield, USA: Science Publishers. 536 p.Google Scholar
Karatajute-Talimaa, V, Predtechenskyj, N. 1995. The distribution of the vertebrates in the Late Ordovician and Early Silurian palaeobasins of the Siberian Platform. Bull Mus nat d’Hist Nat, Paris 4e serie 17, section C, 14:3955.Google Scholar
Kemp, A, Cavin, L, Guinot, G. 2017. Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeog Palaeoclim Palaeoecol 471:209219.Google Scholar
Kemp, A, Molnar, RE. 1981. Neoceratodus forsteri from the Lower Cretaceous of New South Wales, Australia. J Paleo 55:211217.Google Scholar
King, B, Qiao, T, Lee, MSY, Zhu, M, Long, JA. 2016. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol 66:488516.Google Scholar
Kriwet, J, Kiessling, W, Klug, S, Heidtke, UHJ. 2009. Diversification trajectories and evolutionary life-history traits in early sharks and batoids. Proc R Soc B 276:945951.Google Scholar
Liston, J, Newbrey, M, Challands, T, Adams, C. 2013. Growth, age and size of the Jurassic pachycormid Leedsichthys problematicus (Osteichthyes: Actinopterygii). In: Arratia, G, Schultze, H, Wilson, M, editors. Mesozoic Fishes 5 – Global Diversity and Evolution. München: Verlag Dr. Friedrich Pfeil. pp. 145175.Google Scholar
Lloyd, GT, Wang, SC, Brusatte, SL. 2011. Identifying heterogeneity in rates of morphological evolution: Discrete character change in the evolution of lungfish (Sarcopterygii: Dipnoi). Evolution 66:330348.Google Scholar
Long, JA. 1983a. New bothriolepid fish from the Late Devonian of Victoria, Australia. Palaeontology 26:295320.Google Scholar
Long, JA. 1983b. A new diplacanthoid acanthodian from the Late Devonian of Victoria, Australia. Mem Assoc Austral Palaeo 1:5165.Google Scholar
Long, JA. 1984. New phyllolepids from Victoria and the relationships of the group. Proc Linn Soc New South Wales 107:263304.Google Scholar
Long, JA. 1985. A new osteolepid fish from the Upper Devonian Gogo Formation of Western Australia. Rec West Austral Mus 12:361377.Google Scholar
Long, JA. 1986. A new Late Devonian acanthodian fish from Mt Howitt, Victoria, Australia, with remarks on acanthodian biogeography. Proc R Soc Victoria 98:117.Google Scholar
Long, JA. 1988. New palaeoniscoid fishes from the Late Devonian and Early Carboniferous of Victoria. Mem Assoc Austral Palaeont 7:164.Google Scholar
Long, JA. 1993. Cranial ribs in Devonian lungfishes and the origin of dipnoan air-breathing. Mem Assoc Austral Palaeont 15:199209.Google Scholar
Long, JA. 1997. Ptyctodontid fishes (Vertebrata, Placodermi) from the Late Devonian Gogo Formation, Western Australia, with a revision of the genus Ctenurella Ørvig, 1960. Geodiversitas 19:515555.Google Scholar
Long, JA. 1999. A new genus of fossil coelacanth (Osteichthyes: Coelacanthiformes) from the Middle Devonian of southeastern Australia. Rec Western Aust Mus Suppl 57:3753.Google Scholar
Long, JA. 2010. New holodontid lungfishes from the Late Devonian Gogo Formation of Western Australia. In: Elliott, DK, Maisey, JG, Yu, X, Miao, D, editors. Fossil Fishes and Related Biota: Morphology, Phylogeny and Paleobiogeography. München: Dr. Verlag Pfeil. pp. 275298.Google Scholar
Long, JA. 2011. The Rise of Fishes – 500 million years of evolution. Sydney: University of New South Wales Press. 287 p.Google Scholar
Long, JA. 2016. The first jaws. Science 354:280281.Google Scholar
Long, JA, Barwick, RE, Campbell, KSW. 1997. Osteology and functional morphology of the osteolepiform fish Gogonasus andrewsae Long, 1985, from the Upper Devonian Gogo Formation, Western Australia. Rec Western Austral Mus Suppl 53:189.Google Scholar
Long, JA, Choo, B, Young, GC. 2008. A new basal actinopterygian fish from the Middle Devonian Aztec Siltstone of Antarctica. Antarctic Sci 20:393412.Google Scholar
Long, JA, Clement, AM. 2009. The postcranial anatomy of two Middle Devonian lungfishes (Osteichthyes, Dipnoi) from Mt. Howitt, Victoria, Australia. Mem Mus Victoria 66:189202.Google Scholar
Long, JA, Mark-Kurik, E, Johanson, Z, Lee, MS, Young, GC, Min, Z, Ahlberg, PE, Newman, M, Jones, R, den Blaauwen, J, Choo, B, Trinajstic, K. 2015. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature 517:196199.Google Scholar
Long, JA, Mark-Kurik, E, Young, GC. 2014. Taxonomic revision of buchanosteoid placoderms (Arthrodira) from the Early Devonian of south-eastern Australia and Arctic Russia Austral J Zool 62:2643.Google Scholar
Long, JA, Trinajstic, K. 2010. The Late Devonian Gogo Formation lägerstatten of Western Australia – exceptional vertebrate preservation and diversity. Ann Rev Earth Planet Sci 38:665680.Google Scholar
Long, JA, Trinajstic, K, Johanson, Z. 2009. Devonian arthrodire embryos and the origin of internal fertilization in vertebrates Nature 457:11241127.Google Scholar
Long, JA, Trinajstic, K, Young, GC, Senden, TJ. 2008. Live birth in the Devonian period. Nature 453:650652.Google Scholar
Long, JA, Young, GC, Holland, T, Senden, TJ, Fitzgerald, EMG. 2006. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444:199202.Google Scholar
Lu, J, Giles, S, Friedman, M, den Blaauwen, JL, Zhu, M. 2016. The oldest Actinopterygian highlights the cryptic early history of the hyperdiverse ray-finned fishes. Curr Biol 26:17.Google Scholar
Lu, J, Zhu, M. 2010. An onychodont fish (Osteichthyes, Sarcopterygii) from the Early Devonian of China, and the evolution of the Onychodontiformes. Proc R Soc B 277:293299.Google Scholar
Lu, J, Zhu, M, Long, JA, Zhao, W, Senden, TJ, Jia, LT, Qiao, T. 2012. The earliest known stem-tetrapod from the Lower Devonian of China. Nature Comm 3:1160.Google Scholar
Lund, R. 1982. Harpagofututor volsellorhinus new genus and species (Chondrichthyes, Chondrenchelyiformes) from the Namurian Bear Gulch Limestone, Chondrenchelys problematica Traquair (Visean), and their sexual dimorphism. J Paleo 56:938958.Google Scholar
Lund, R. 1985. The morphology of Falcatus falcatus (St. John and Worthen), a Mississippian stethacanthid chondrichthyan from the Bear Gulch Limestone of Montana. J Vert Paleo 5:1, 119.Google Scholar
Lund, R. 1986. On Damocles serratus, nov. gen. et sp. (Elasmobranchii: Cladodontida) from the Upper Mississippian Bear Gulch Limestone of Montana. J Vert Paleo 6:1219.Google Scholar
Lund, R. 2000. The new actinopterygian order Guildayichthyiformes from the Lower Carboniferous of Montana (USA). Geodiversitas 22:171206.Google Scholar
Lund, R, Poplin, C. 2002. Cladistic analysis of the relationships of the tarasiids (Lower Carboniferous actinopterygians) from the Bear Gulch Limestone of Montana (USA, Lower Carboniferous). J Vert Paleo 22:480486.Google Scholar
Mader, H. 1986. Schuppen und Zahne von Acanthodiern und Elasmobranchiern aus dem Unter-Devon Spaniens (Pisces). Gott Arbeit Geol Paläontol 28:159.Google Scholar
Maisey, JG. 1996. Discovering fossil fishes. New York: Henry Holt & Co.Google Scholar
Maisey, JG, Anderson, ME. 2001. A Primitive Chondrichthyan Braincase from the Early Devonian of South Africa. J Vert Paleo 21:702713.Google Scholar
Maisey, JG, Carvalho, MR. 1997. A new look at old sharks. Nature 385:779780.Google Scholar
Marrs, T, Turner, S, Karaqtjute-Talimaa, V. 2007. Handbook of paleoichthyology. Vol. 1B. Agnatha II. Thelodonti. München: Verlag Dr Friedrich Pfeil.Google Scholar
Miles, RS. 1967. Observations on the ptyctodont fish Rhamphodopsis Watson. Zool J Linn Soc 47:99120.Google Scholar
Miles, RS. 1971. The Holonematidae (placoderm fishes): A review based on new specimens of Holonema from the Upper Devonian of Western Australia. Phil Trans R Soc London (Biol) 263:101234.Google Scholar
Miles, RS. 1977. Dipnoan (lungfish) skulls and the relationships of the group: A study based on new species from the Devonian of Australia. Zool J Linn Soc 61:1328.Google Scholar
Miles, RS, Young, GC. 1977. Placoderm interrelationships reconsidered in the light of new ptyctodontids from Gogo, Western Australia. Linn Soc Symp Ser 4:123198.Google Scholar
Miller, RF, Cloutier, E, Turner, S. 2003. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425:501504.Google Scholar
Millot, J, Anthony, J. 1958a. Anatomie de Latimeria chalumnae, I – Squelette, Muscles, et Formation de Soutiens. Paris: CNRS.Google Scholar
Millot, J, Anthony, J. 1958b. Anatomie de Latimeria chalumnae, II – Systeme nerveux et organes des sens. Paris: CNRS.Google Scholar
Millot, J, Anthony, J, Robineau, D. 1978. Anatomie de Latimeria chalumnae, III. Paris: CNRS.Google Scholar
Nelson, G. 2006. Fishes of the World. London: Wiley and Sons.Google Scholar
Niedz´wiedzki, G, Szrek, P, Narkiewicz, M, Ahlberg, PE. 2010. Tetrapod tracks from the early Middle Devonian of Poland. Nature 463:4348.Google Scholar
Novitskaya, LI. 1986. Fossil agnathans of USSR—Heterostracans: Cyathaspids, amphiaspids, pteraspids. Akad Nauk SSSR, Trudy Paleontol Instit 219:1159.Google Scholar
Ørvig, T. 1975. Description with special reference to the dermal skeleton, of a new radotinid arthrodire from the Gedinnian of Arctic Canada. Colloq inter CNRS. 218:4171.Google Scholar
Otero, O, Pinton, A, Cappetta, H, Adnet, S, Valentin, X, Salem, M, Jaeger, JJ. 2015. A fish assemblage from the middle Eocene from Libya (Dur At-Talah) and the earliest record of modern African fish genera. PLoS ONE 10(12):e0144358.Google Scholar
Pan, Z, Zhu, M, Zhu, Y, Jia, L. 2017. A new antiarch placoderm from the Emsian (Early Devonian) of Wuding, China. Alcheringa. DOI: 10.1080/03115518.2017.1338357.Google Scholar
Pearson, DM, Westoll, TS. 1979. The Devonian actinopterygian Cheirolepis Agassiz. Trans R Soc Edinburgh: Earth Sci 70:337–99.Google Scholar
Pimiento, C, Balk, MA. 2015. Body-size trends of the extinct giant shark Carcharocles megalodon: A deep-time perspective on marine apex predators. Paleobiology 41:479490.Google Scholar
Pradel, A, Langer, M, Maisey, JG, Geffard-Kuriyama, D, Cloetens, P, Janvier, P, Tafforeau, P. 2009. Skull and brain of a 300-million-yea-old chimaeroid fish revealed by synchrotron holotomography. Proc Nat Acad Sci USA 106:52245228.Google Scholar
Pridmore, PA, Campbell, KSW, Barwick, RE. 1994. Morphology and phylogenetic position of the holodipteran dipnoans of the Upper Devonian Gogo Formation of northwestern Australia. Phil Trans R Soc Lond (Biol) 344:105164.Google Scholar
Purnell, M. 2001. Feeding in extinct jawless heterostracan fishes and testing scenarios of early vertebrate evolution. Proc R Soc London 269:8388.Google Scholar
Qiao, T, King, B, Long, JA, Ahlberg, PE, Zhu, M. 2016. Early Gnathostome phylogeny revisited: Multiple method consensus. PLoS ONE 11(9):123.Google Scholar
Qu, QM, Sanchez, S, Blom, H, Tafforeau, P, Ahlberg, PE. 2013. Scales and tooth whorls of ancient fishes challenge distinction between external and oral ‘teeth’. PLoS ONE 8(8):e71890.Google Scholar
Repetski, JE. 1978. A fish from the Upper Cambrian of North America. Science 200:529–31.Google Scholar
Richter, M, Smith, M. 1995. A microstructural study of the ganoine tissue of selected lower vertebrates. Zool J Lin Soc 114:173212.Google Scholar
Ritchie, A. 1967. Ateleaspis tessellate Traquair, a non-cornuate cephalaspid from the Upper Silurian of Scotland. Zool J Lin Soc 47:6981.Google Scholar
Ritchie, A. 1973. Wuttagoonaspis gen. nov., an unusual arthrodire from the Devonian of western New South Wales, Australia. Palaeontograph Abt A 143A:5872.Google Scholar
Ritchie, A. 1975. Groenlandaspis in Antarctica, Australia and Europe. Nature 254:569–73.Google Scholar
Ritchie, A. 1984. A new placoderm, Placolepis gen. nov. (Phyllolepidae) from the Late Devonian of New South Wales, Australia. Proc Linn Soc NSW 107:321–53.Google Scholar
Ritchie, A. 2004. A new genus and two new species of Groenlandaspis arthrodire (Pisces: Placodermi) from the Early-Middle Devonian Mulga Downs Group of western New South Wales, Australia. Foss Strat 50:5681.Google Scholar
Ritchie, A. 2005. Cowralepis, a new genus of phyllolepid fish (Pisces, Placodermi) from the Late Middle Devonian of New South Wales, Australia. Proc Linn Soc NSW 126:215259.Google Scholar
Ritchie, A, Gilbert-Tomlinson, J. 1977. First Ordovician vertebrates from the southern hemisphere. Alcheringa 1:351–68.Google Scholar
Rosen, DE, Forey, PL, Gardiner, BG, Patterson, C. 1981. Lungfishes, tetrapods, paleontology and pleisomorphy. Bull Am Mus Nat Hist 167:159276.Google Scholar
Sallan, LC. 2014. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol Rev 89:950971.Google Scholar
Sanchez, S, Tafforeau, P, Ahlberg, PE. 2014. The humerus of Eusthenopteron: A puzzling organisation presaging the establishment of tetrapod limb bone marrow. Proc R Soc B 281.Google Scholar
Sansom, IJ, Davies, NS, Coates, MI, Nicoll, RS, Ritchie, A. 2012. Chondrichthyan-like scales from the Middle Ordovician of Australia. Palaeontology 55:243247.Google Scholar
Sansom, IJ, Donoghue, PCJ, Albanesi, G. 2005. Histology and affinity of the earliest armoured vertebrate. Biology Letters 1: 446449.Google Scholar
Sansom, IJ, Smith, MP. 2001. Late Ordovician vertebrates from the Bighorn Mountain of Wyoming, USA. Palaeontology 48:3148.Google Scholar
Sansom, IJ, Smith, MM, Smith, MP. 1996. Scales of thelodont and shark-like fishes from the Ordovician of Colorado. Nature 379:628.Google Scholar
Sansom, IJ, Smith, MM, Smith, MP. 2001. The Ordovician radiation of vertebrates. In: Ahlberg, PE, editor. Major Events in Early Vertebrate Evolution. London: Systematics Association. pp. 156172.Google Scholar
Sansom, R. 2009. Phylogeny, classification and character polarity of the Osteostraci (Vertebrata). J Syst Paleo 7:95115.Google Scholar
Schultze, H-P. 1973. Crossopterygier mit heterozerker Schwanzflose aus dem Oberdevon Kanadas, Nebst einer Beschreibung von Onychodontida-Resten aus dem Mittledevon Spaniens und dem Karbon der USA. Palaeontol Abt A 143A:188208.Google Scholar
Schultze, H-P. 1984. The head-shield of Tiaraspis subtilis (Gross) (Pisces, Arthrodira). Proc Linn Soc NSW 107:355365.Google Scholar
Schultze, H-P. 2000. A prorolepiform rhipidistian from the Lower devbonian of the Canadaian Arctic. Geowiss Rehie 3:99109.Google Scholar
Shu, D, Luo, H-L, Conway Morris, S, Zhang, X, Hu, S-X, Chen, L, Han, J, Zhu, M, Li, Y, Chen, L-Z. 1999. Lower Cambrian vertebrates from South China. Nature 402:4246.Google Scholar
Shu, D-G, Conway Morris, S, Han, J, Zhang, Z-F, Yasui, K, Janvier, P, Chen, L, Zhang, X-L, Liu, J-N, Li, Y, Liu, H-K. 2003. Head and backbone of the Early Cambrian vertebrate Haikouichthys, Nature 421:526529.Google Scholar
Shubin, NH, Daeschler, EB, Jenkins, FAJ. 2014. Pelvic girdle and fin of Tiktaalik roseae. Proc Nat Acad Sci USA 111:893899.Google Scholar
Siverson, M. 1996. Lamniform sharks of the Mid Cretaceous Alinga Formation and Beedagong Claystone, Western Australia. Palaeontology 39:813849.Google Scholar
Smith, JLB. 1939. A living fish of the Mesozoic type. Nature 143:455456.Google Scholar
Smith, MM. 1984. Petrodentine in extant and fossil dipnoan dentitions: microstructure, histogenesis and growth. Proc Linn Soc NSW 107:367407.Google Scholar
Smith, MM, Sansom, IJ. 1997. Exoskeletal micro-remains of an Ordovician fish from the Harding Sandstone of Colorado. Palaeontology 40:645658.Google Scholar
Smith, MP, Sansom, IJ, Cochrane, KD. 2001. The Cambrian origin of vertebrates. In: Ahlberg, PE (ed), Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, Genetics and Development. London: Taylor & Francis, 6784.Google Scholar
Soehn, KL, Wilson, M. 1990. A complete, articulated heterostracan from the Wenlockian (Silurian) beds of the Delorme group, Mackenzie Mountains, Northwest Territories, Canada. J Vert Paleo 10:405419.Google Scholar
Stensiö, EA. 1927. The Downtonian and Devonian vertebrates of Spitsbergen: I. Family Cephalaspidae. Skrift Svalbard Ish 12:1391.Google Scholar
Stensiö, EA. 1936. On the Placodermi of the Upper Devonian of East Greenland. Supplement to Part 1. Meddel Grønland 97:152.Google Scholar
Stensiö, EA. 1944. Contributions to the knowledge of the vertebrate fauna of the Silurian and Devonian of Western Podolia: II. Notes on two arthrodires from the Downtonian of Podolia. Ark für Zool 35:183.Google Scholar
Stensiö, EA. 1963. Anatomical studies on the arthrodiran head: I. Preface, geological and geographical distribution, the organization of the arthrodires, the anatomy of the head in the Dolichothoraci, Coccosteomorphi and Pachyosteomorphi. Kungl Svenska Vetenskap Handl 4(9)2:1419.Google Scholar
Takezaki, N, Nishihara, H. 2016. Resolving the phylogentic position of coelacanth: The closest relative is not always the most appropriate outgroup. Genome Biol Evol 8:12081221.Google Scholar
Tapanila, L, Pruitt, J, Pradel, A, Wilga, C, Ramsay, JB, Schlader, R, Didier, DA. 2013. Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion. Biol Lett 9:20130057.Google Scholar
Thies, D, Reif, WE. 1985. Phylogeny and evolutionary ecology of Mesozoic Neoselachii. Neues Jahrb Geologie Paläontol Abhand 169:333361.Google Scholar
Thomson, KS, Campbell, KSW. 1971. The structure and relationships of the primitive Devonian lungfish – Dipnorhynchus sussmilchi (Etheridge). Bull Peabody Mus Nat History 38:1109.Google Scholar
Trinajstic, K, Boisvert, C, Long, J, Maksimenko, A, Johanson, Z. 2015. Pelvic and reproductive structures in placoderms (stem gnathostomes). Biol Rev 90:467501.Google Scholar
Trinajstic, K, Long, JA, Johanson, Z, Young, G, Senden, T. 2012. New morphological information on the ptyctodontid fishes (Placodermi, Ptyctodontida) from Western Australia. J Vert Paleo 32:757780.Google Scholar
Turner, S. 1982. A new articulated thelodont (Agnatha) from the Early Devonian of Britain. Palaeontology 25:879889.Google Scholar
Underwood, CJ. 2006. Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous. Palaeobiology 32:215235.Google Scholar
Valiukevičius, J, Burrow, CJ. 2005. Diversity of tissues in acanthodians with Nostolepis-type histological structure. Acta Pal Polon 50:635649.Google Scholar
Van der Brughen, W, Janvier, P. 1993. Denticles in thelodonts. Nature 364:107.Google Scholar
Wang, S, Drapala, V, Barwick, RE, Campbell, KSW. 1993. The dipnoan species, Sorbitorhynchus deleaskitus, from the Lower Devonian of Guangxi, China. Phil Trans R Soc London (Biol) 340:124.Google Scholar
Watson, DMS. 1938. On Rhamphodopsis, a ptyctodont from the middle Old Red Sandstone of Scotland. Trans R Soc Edinburgh 59:397410.Google Scholar
White, EI. 1978. The larger arthrodiran fishes from the area of the Burrinjuck Dam, N.S.W. Trans Zool Soc London 34:149262.Google Scholar
Wilson, MVH, Caldwell, MW. 1993. New Silurian and Devonian fork-tailed ‘thelodonts’ are jawless vertebrates with stomachs and deep bodies. Nature 361:442–44.Google Scholar
Wilson, MVH, Hanke, GF, Märrs, T. 2010. Paired fins of jawless vertebrates and their homologies across the agnathan-gnathostome Transition. In: Anderson, JS, Sues, H–D, editors. Major Transitions in Vertebrate Evolution. Bloomington: Indiana University Press. pp. 122149.Google Scholar
Wu, F, Sun, YL, Xu, GH, Hao, WC, Jiang, DY, Sun, ZY. 2010. New saurichthyid fishes (Actinopterygii) from the Middle Triassic (Pelsonian, Anisian) of southwestern China. Acta Pal Polon 56:581614.Google Scholar
Xu, GH, Zhao, LJ, Gao, KW, Wu, FX. 2012. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates. Proc Roy Soc B: Biol Sci 280 (1750):20122261.Google Scholar
Young, GC. 1979. New information on the structure and relationships of Buchanosteus (Placodermi: Euarthrodira) from the Early Devonian of New South Wales. Zool J Linn Soc 66:309352.Google Scholar
Young, GC. 1980. A new Early Devonian placoderm from New South Wales, Australia, with a discussion of placoderm phylogeny. Palaeontograph Abt A 167:1076.Google Scholar
Young, GC. 1981. Biogeography of Devonian vertebrates. Alcheringa 5:225243.Google Scholar
Young, GC. 1988. Antiarchs (placoderm fishes) from the Devonian Aztec Siltstone, southern Victoria Land, Antarctica. Palaeontograph Abt A 202:1125.Google Scholar
Young, GC. 1991. The first armoured agnathan vertebrates from the Devonian of Australia. In: Chang, MM, Liu, YH, Zhang, GR, editors. Early Vertebrates and Related Problems of Evolutionary Biology. Beijing: Science Press. pp. 6785.Google Scholar
Young, GC. 1997. Ordovician microvertebrate remains from the Amadeus Basin, Central Australia. J Vert Paleo 17:125.Google Scholar
Young, GC. 2010. Placoderms (armored fish): dominant vertebrates of the Devonian Period. Ann Rev Earth Planet Sci 38:523550.Google Scholar
Young, GC, Karatajute-Talimaa, VN, Smith, MM. 1996. A possible Late Cambrian vertebrate from Australia. Nature 383:810812.Google Scholar
Young, GC, Schultze, H-P. 2005. New osteichthyans (bony fishes) from the Devonian of Central Australia. Foss Rec 8:1335.Google Scholar
Yu, X. 1998. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. J Vert Paleo 18:261274.Google Scholar
Zhu, M, Ahlberg PE. 2004. The origin of the internal nostril of tetrapods Nature 432:9497.Google Scholar
Zhu, M, Ahlberg, PE, Pan, Z, Zhu, Y, Qiao, T, Zhao, W, Jia, LT, Lu, J. 2016. A Silurian maxillate placoderm illuminates jaw evolution. Science 334–336.Google Scholar
Zhu, M, Gai, Z-K. 2006. Phylogenetic relationships of galeaspids (Agnatha). Vert PalAsia 44:127.Google Scholar
Zhu, M, Yu, X, Ahlberg, PE. 2001. A primitive sarcopterygian fish with an eyestalk. Nature 410:8184.Google Scholar
Zhu, M, Yu, X, Ahlberg, PE, Choo, B, Lu, J, Qiao, T, Qu, Q, Zhao, W, Jia, L, Blom, H, Zhu, Y. 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188193.Google Scholar
Zhu, M, Yu, X, Lu, J, Qiao, T, Zhao, W-J, Jia, LT. 2012. Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian. Nature Comm 3:772.Google Scholar
Zhu, M, Yu, X, Wang, W, Zhao, WJ, Jia, LT. 2006. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature 441:7780.Google Scholar
Zhu, M, Yu, X. 2002. A primitive fish close to the common ancestor of tetrapods and lungfish. Nature 418:767770.Google Scholar
Zhu, M, Zhao, WJ, Jia, LT, Lu, J, Qiao, T, Qu, Q. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters Nature 458:469474.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×