Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T21:51:26.063Z Has data issue: false hasContentIssue false

Part II - Senescence in Animals

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abrams, P. A. (1993). Does increased mortality favor the evolution of more rapid senescence? Evolution, 47(3), 877–87.CrossRefGoogle ScholarPubMed
Abrams, P. A. (1991). The fitness costs of senescence: the evolutionary importance of events in early adult life. Evolutionary Ecology, 5, 343–60.CrossRefGoogle Scholar
Borgerhoff Mulder, M. (1998). The demographic transition: are we any closer to an evolutionary explanation? Trends in Ecology and Evolution, 13, 266–70.CrossRefGoogle Scholar
Bronikowski, A. M., Altmann, J., Brockman, D. K., et al. (2011). Aging in the natural world: comparative data reveal similar mortality patterns across primates. Science, 331, 1325–8.CrossRefGoogle ScholarPubMed
Burger, O., Baudisch, A. & Vaupel, J. W. (2012). Human mortality improvement in evolutionary context. Proceedings of the National Academy of Sciences of the United States of America, 109, 18210–14.Google ScholarPubMed
Burger, O., DeLong, J. P. & Hamilton, M. J. (2011). Industrial energy use and the human life history. Scientific Reports, 1, 56.CrossRefGoogle ScholarPubMed
Burger, O. & Missov, T. I. (2016). Evolutionary Theory and the Problem of Correlated Gompertz Parameters. Journal of Theoretical Biology, 408, 3441. http://dx.doi.org/10.1016/j.jtbi.2016.08.002CrossRefGoogle ScholarPubMed
Carey, J. R. & Judge, D. S. (2001). Life span extension in humans is self-reinforcing: a general theory of longevity. Population and Development Review, 27, 411–36.CrossRefGoogle Scholar
Carnes, B. A., Holden, L. R., Olshansky, S. J., et al. (2006). Mortality partitions and their relevance to research on senescence. Biogerontology, 7, 183–98.CrossRefGoogle ScholarPubMed
Caswell, H. (2007). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22, 173–4.CrossRefGoogle ScholarPubMed
Charlesworth, B. (2000). Fisher, Medawar, Hamilton and the evolution of aging. Genetics, 156, 927–31.CrossRefGoogle ScholarPubMed
Charlesworth, B. & Partridge, L. (1997). Ageing: levelling of the grim reaper. Current Biology, 7, R440–2.CrossRefGoogle ScholarPubMed
Charnov, E. L. & Berrigan, D. (1993). Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evolutionary Anthropology, 1, 191–4.CrossRefGoogle Scholar
Chen, H. & Maklakov, A. A. (2012). Longer life span evolves under high rates of condition-dependent mortality. Current Biology, 22, 2140–3.CrossRefGoogle ScholarPubMed
Chu, C. Y. C. & Lee, R. D. (2006). The co-evolution of intergenerational transfers and longevity: An optimal life history approach. Theoretical Population Biology, 69, 193201.Google Scholar
DeLong, J. P., Burger, O. & Hamilton, M. J. (2010). Current demographics suggest future energy supplies will be inadequate to slow human population growth. PLoS ONE, 5, e13206.CrossRefGoogle Scholar
Finch, C. E. (2012). Evolution of the human lifespan, past, present, and future: phases in the evolution of human life expectancy in relation to the inflammatory load. Proceedings of the American Philosophical Society, 156, 944.Google Scholar
Finch, C. E. (1994). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Finch, C. E., Pike, M. C. & Witten, M. (1990). Slow mortality rate accelerations during aging in some animals approximate that of humans. Science, 249, 902–5.CrossRefGoogle ScholarPubMed
Fogel, R. W. (1997). Economic and social structure for an ageing population. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 352, 1905–17.CrossRefGoogle ScholarPubMed
Fogel, R. W. & Costa, D. L. (1997). A theory of technophysioevolution, with some implications for forecasting population, health care costs, and pension costs. Demography, 34, 4966.CrossRefGoogle ScholarPubMed
Gause, G. F. (1934). The Struggle for Existence (Baltimore: Williams & Wilkins).CrossRefGoogle ScholarPubMed
Gurven, M. & Fenelon, A. (2009). Has actuarial aging ‘slowed’ over the past 250 years? A comparison of small-scale subsistence populations and European cohorts. Evolution: International Journal of Organic Evolution, 63, 1017–35.CrossRefGoogle Scholar
Gurven, M. & Kaplan, H. (2007). Longevity among hunter-gatherers: a cross-cultural examination. Population and Development Review, 33, 321–65.CrossRefGoogle Scholar
Gurven, M., Stieglitz, J., Hooper, P. L., et al. (2012). From the womb to the tomb: the role of transfers in shaping the evolved human life history. Experimental Gerontology 47(10), 807–13.CrossRefGoogle Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hawkes, K. (2010). How grandmother effects plus individual variation in frailty shape fertility and mortality: guidance from human–chimpanzee comparisons. Proceedings of the National Academy of Sciences of the United States of America 107(2), 8977–84.Google ScholarPubMed
Hawkes, K., Smith, K. R. & Blevins, J. K. (2012). Human actuarial aging increases faster when background death rates are lower: a consequence of differential heterogeneity? Evolution, 66, 103–14.CrossRefGoogle Scholar
Hawkes, K., Smith, K. R. & Robson, S. L. (2009). Mortality and fertility rates in humans and chimpanzees: how within-species variation complicates cross-species comparisons. American Journal of Human Biology, 21, 578–86.CrossRefGoogle ScholarPubMed
Hill, K., Barton, M. & Hurtado, A. M. (2009). The emergence of human uniqueness: characters underlying behavioral modernity. Evolutionary Anthropology: Issues, News, and Reviews, 18, 187200.CrossRefGoogle Scholar
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kirk, D. (1996). Demographic transition theory. Population Studies, 50, 361–87.CrossRefGoogle ScholarPubMed
Le Cunff, Y., Baudisch, A. & Pakdaman, K. (2013). How evolving heterogeneity distributions of resource allocation strategies shape mortality patterns. PLoS Comput Biol, 9, e1002825.CrossRefGoogle ScholarPubMed
Lee, R. D. (1987). Population dynamics of humans and other animals. Demography, 24, 443–65.CrossRefGoogle ScholarPubMed
Lee, R. D. (2003). Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species. Proceedings of the National Academy of Sciences of the United States of America, 100, 9637–42.Google Scholar
Lenart, A. & Missov, T. I. (2014). Goodness-of-fit tests for the Gompertz distribution. Communications in Statistics: Theory and Methods, 2014, 138.Google Scholar
Levitis, D. A., Burger, O. & Lackey, L. B. (2013). The human post-fertile lifespan in comparative evolutionary context. Evolutionary Anthropology, 22, 6679.CrossRefGoogle ScholarPubMed
Makeham, W. M. (1867). On the law of mortality. Journal of the Institute of Actuaries, 1866, 325–58.Google Scholar
Maklakov, A. A., Rowe, L. & Friberg, U. (2015). Why organisms age: evolution of senescence under positive pleiotropy? BioEssays 37, 802–7.CrossRefGoogle ScholarPubMed
Oeppen, J. & Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296, 1029.CrossRefGoogle ScholarPubMed
Preston, S. H. (1975). The changing relation between mortality and level of economic development. Population Studies, 29, 231–48.CrossRefGoogle ScholarPubMed
Preston, S. H. (2007). The changing relation between mortality and level of economic development. International Journal of Epidemiology, 36, 484–90.Google ScholarPubMed
Promislow, D. & Harvey, P. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, 220, 417–37.CrossRefGoogle Scholar
Reznick, D. N., Bryant, M. J., Roff, D. et al. (2004). Effect of extrinsic mortality on the evolution of senescence in guppies. Nature, 431, 1095–9.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2010). Life-history connections to rates of aging in terrestrial vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 107, 10314–19.Google ScholarPubMed
Rose, M. R. (1991). Evolutionary Biology of Aging (New York: Oxford University Press).Google Scholar
Rossi, I. A., Rousson, V. & Paccaud, F. (2012). The contribution of rectangularization to the secular increase of life expectancy: an empirical study. International Journal of Epidemiology 42, 250–8.Google Scholar
Sibly, R. M., Barker, D., Denham, M. C., et al. (2005). On the regulation of populations of mammals, birds, fish, and insects. Science, 309, 607–10.CrossRefGoogle ScholarPubMed
Temby, O. F. & Smith, K. R. (2014). The association between adult mortality risk and family history of longevity: the moderating effects of socioeconomic status. Journal of Biosocial Science, 46, 703–16.Google ScholarPubMed
Tuljapurkar, S. D., Puleston, C. O. & Gurven, M. D. (2007). Why men matter: mating patterns drive evolution of human lifespan. PLoS One, 2, e785.CrossRefGoogle ScholarPubMed
Vaupel, J. W. (2010). Biodemography of human ageing. Nature, 464, 536–42.CrossRefGoogle ScholarPubMed
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Vaupel, J. W. & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population dynamics. American Statistician, 39, 176–85.Google ScholarPubMed
Walsh, M. R., Whittington, D. & Walsh, M. J. (2014). Does variation in the intensity and duration of predation drive evolutionary changes in senescence? Journal of Animal Ecology 83, 1279–88.CrossRefGoogle ScholarPubMed
Wells, J. C. (2007). The programming effects of early growth. Early Human Development, 83, 743–8.CrossRefGoogle ScholarPubMed
Wells, J. C. (2011). The thrifty phenotype: an adaptation in growth or metabolism? American Journal of Human Biology, 23, 6575.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 1957, 398411.CrossRefGoogle Scholar
Williams, P. D., Day, T., Fletcher, Q. & Rowe, L. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21, 458–63.CrossRefGoogle ScholarPubMed
Wrigley, E. A. (1990). Continuity, Chance and Change: The Character of the Industrial Revolution in England (Cambridge University Press).Google Scholar
Wrigley, E. A. (2010). Energy and the English Industrial Revolution (Cambridge University Press).CrossRefGoogle Scholar
Yashin, A. I., Ukraintseva, S. V., Boiko, S. I. & Arbeev, K. G. (2002). Individual aging and mortality rate: how are they related? Proceedings of the Royal Society of London Series B: Biological Research, 49, 206–17.Google ScholarPubMed

References

Abrams, P. A. (1993). Does increased mortality favor the evolution of more rapid senescence? Evolution, 47, 877–87.CrossRefGoogle ScholarPubMed
Adams, L. G. & Dale, B. W. (1998). Reproductive performance of female Alaskan caribou. Journal of Wildlife Management, 62, 1184–95.CrossRefGoogle Scholar
Albon, S. D., Stien, A., Irvine, R. J., et al. (2002). The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London Series B: Biological Sciences, 269, 1625–32.CrossRefGoogle ScholarPubMed
Aumaître, A., Morvan, C., Quéré, J. P., et al. (1982). Productivité potentielle et reproduction hivernale chez la laie (Sus scrofa scrofa) en milieu sauvage. Journée de la Recherche Porcine, 14, 109–24.Google Scholar
Austad, S. N. (1993). Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). Journal of Zoology, 229, 695708.CrossRefGoogle Scholar
Baker, J. D. & Thompson, P. M. (2007). Temporal and spatial variation in age-specific survival rates of a long-lived mammal, the Hawaiian monk seal. Proceedings of the Royal Society of London Series B: Biological Sciences, 274, 407–15.Google ScholarPubMed
Bailey, J. A. (1991). Reproductive success in female mountain goats. Canadian Journal of Zoology, 69, 2956–61.CrossRefGoogle Scholar
Beauplet, G., Barbraud, C., Dabin, W., Kussener, C. & Guinet, C. (2006). Age-specific survival and reproductive performances in fur seals: evidence of senescence and individual quality. Oikos, 112, 430–41.CrossRefGoogle Scholar
Bebbington, M., Lai, C. & Zitikis, R. (2007). Modeling human mortality using mixtures of bathtub shaped failure distributions. Journal of Theoretical Biology, 245, 528–38.CrossRefGoogle ScholarPubMed
Beirne, C., Delahay, R. & Young, A. (2015). Sex differences in senescence: the role of intra-sexual competition in early adulthood. Proceedings of the Royal Society of London Series B: Biological Sciences, 282, 20151086.Google ScholarPubMed
Berger, V., Lemaître, J. F., Gaillard, J.-M. & Cohas, A. (2015). How do animals optimize the size-number trade-off when aging? Insights from reproductive senescence patterns in marmots. Ecology, 96, 4653.CrossRefGoogle ScholarPubMed
Berger, V., Lemaître, J. F., Gaillard, J.-M. & Cohas, A. (2016). Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence. Journal of Mammalogy 97, 9921000.CrossRefGoogle Scholar
Bergeron, P., Careau, V., Humphries, M. M., et al. (2011). The energetic and oxidative costs of reproduction in a free-ranging rodent. Functional Ecology, 25, 1063–71.CrossRefGoogle Scholar
Bérubé, C. H., Festa-Bianchet, M. & Jorgenson, J. T. (1999). Individual differences, longevity, and reproductive senescence in bighorn ewes. Ecology, 80, 2555–65.CrossRefGoogle Scholar
Bishop, C. J., White, G. C., Freddy, D. J., et al. (2009). Effect of enhanced nutrition on mule deer population rate of change. Wildlife Monographs, 172, 128.CrossRefGoogle Scholar
Blomquist, G. E. (2009). Trade-off between age of first reproduction and survival in a female primate. Biology Letters, 5, 339–42.CrossRefGoogle Scholar
Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. (2012). The forms and fitness cost of senescence: age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. American Naturalist, 179, E1527.CrossRefGoogle Scholar
Bowen, W. D., Iverson, S. J., McMillan, J. I. & Boness, D. J. (2006). Reproductive performance in grey seals: age-related improvement and senescence in a capital breeder. Journal of Animal Ecology, 75, 1340–51.CrossRefGoogle Scholar
Bradley, A. J. (1997). Reproduction and life history in the red-tailed phascogale, Phascogale calura (Marsupialia: Dasyuridae): the adaptive-stress senescence hypothesis. Journal of Zoology, 241, 739–55.CrossRefGoogle Scholar
Bronikowski, A. M., Altmann, J., Brockman, D. K., et al. (2011). Aging in the natural world: comparative data reveal similar mortality patterns across primates. Science, 331, 1325–8.CrossRefGoogle ScholarPubMed
Broussard, D. R., Michener, G. R., Risch, T. S. & Dobson, F. S. (2005). Somatic senescence: evidence from female Richardson’s ground squirrels. Oikos, 108, 591601.CrossRefGoogle Scholar
Broussard, D. R., Risch, T. S., Dobson, F. S. & Murie, J. O. (2003). Senescence and age-related reproduction of female Columbian ground squirrels. Journal of Animal Ecology, 72, 212–19.CrossRefGoogle Scholar
Byers, J. A. (1997). American Pronghorn: Social Adaptations and the Ghosts of Predators Past (University of Chicago Press).Google Scholar
Cagnacci, F., Boitani, L., Powell, R. A. & Boyce, M. S. (2010). Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 365, 2157–62.CrossRefGoogle ScholarPubMed
Carey, J. R. & Judge, D. S. (2000). Longevity Records: Life Spans of Mammals, Birds, Reptiles, Amphibians and Fish (Odense Monographs on Population Aging) (Odense University Press).Google Scholar
Catchpole, E. A., Morgan, B. J. T., Coulson, T. N., et al. (2000). Factors influencing Soay sheep survival. Journal of the Royal Statistical Society Series C: Applied Statistics, 49, 453–72.CrossRefGoogle Scholar
Caughley, G. (1966). Mortality patterns in mammals. Ecology, 47, 906–18.CrossRefGoogle Scholar
Caughley, G. (1976). Wildlife management and the dynamics of ungulate populations. In Applied Biology, Vol. 1 (pp. 183246), ed. Coaker, T. H. (London: Academic Press).Google Scholar
Chen, H. Y. & Maklakov, A. A. (2012). Longer life span evolves under high rates of condition-dependent mortality. Current Biology, 22, 2140–3.CrossRefGoogle ScholarPubMed
Childerhouse, S. J., Dawson, S. M., Fletcher, D. J., et al. (2010). Growth and reproduction of female New Zealand sea lions. Journal of Mammalogy, 91, 165–76.CrossRefGoogle Scholar
Chilvers, B. L., Wilkinson, I. S. & Mackenzie, D. I. (2010). Predicting life-history traits for female New Zealand sea lions, Phocarctos hookeri: integrating short-term mark-recapture data and population modeling. Journal of Agricultural Biological and Environmental Statistics, 15, 259–78.CrossRefGoogle Scholar
Choquet, R. & Nogué, E. (2011). E-SURGE 1–8 User’s Manual (CEFE, UMR 5175, Montpellier, France), available at http://ftp.cefe.cnrs.fr/biom/soft-cr/.Google Scholar
Choquet, R., Viallefont, A., Rouan, L., et al. (2011). A semi-Markov model to assess reliably survival patterns from birth to death in free-ranging populations. Methods in Ecology and Evolution, 2, 383–9.CrossRefGoogle Scholar
Christensen, L. L., Selman, C., Blount, J. D., et al. (2015). Plasma markers of oxidative stress are uncorrelated in a wild mammal. Ecology and Evolution, 5, 50965108.CrossRefGoogle Scholar
Clutton-Brock, T. H., Guinness, F. E. & Albon, S. D. (1982). Red Deer: Ecology and Behaviour of Both Sexes (University of Chicago Press).Google Scholar
Clutton-Brock, T. H. (1984). Reproductive effort and terminal investment in iteroparous animals. American Naturalist, 123, 212–29.CrossRefGoogle Scholar
Clutton-Brock, T. H. (1988). Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems (University of Chicago Press).Google Scholar
Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. (1988). Reproductive success in male and female red deer. In Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems (pp. 325–43), ed. Clutton-Brock, T. H. (University of Chicago Press).Google Scholar
Clutton-Brock, T. H. & Isvaran, K. (2007). Sex differences in ageing in natural populations of vertebrates. Proceedings of the Royal Society of London Series B: Biological Sciences, 274, 30973310.Google ScholarPubMed
Clutton-Brock, T. H. & Sheldon, B. C. (2010). Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends in Ecology and Evolution, 25, 562–73.CrossRefGoogle ScholarPubMed
Cohen, A. A. (2004). Female post-reproductive lifespan: a general mammalian trait. Biological Reviews, 79, 733–50.CrossRefGoogle ScholarPubMed
Cohen, A. A. (2015). Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology, 17, 116.Google ScholarPubMed
Colchero, F., Jones, O. R. & Rebke, M. (2012). BaSTA: an R package for Bayesian estimation of age-specific survival from incomplete mark-recapture/recovery data with covariates. Methods in Ecology and Evolution, 3, 466–70.CrossRefGoogle Scholar
Comfort, A. (1979). The Biology of Senescence (London: Churchill Livingston).Google Scholar
Crampe, J. P., Loison, A., Gaillard, J.-M., et al. (2006). Monitoring of the reproduction in isard females (Rupicapra pyrenaica pyrenaica) in a non-hunted population and demographic consequences. Canadian Journal of Zoology, 84, 1263–8.CrossRefGoogle Scholar
Crosier, A. E., Marker, L., Howard, J., et al. (2007). Ejaculate traits in the Namibian cheetah (Acinomyx jubatus): influence of age, season and captivity. Reproduction Fertility and Development, 19, 370–82.CrossRefGoogle ScholarPubMed
Curren, L. J., Weldele, M. L. & Holekamp, K. E. (2013). Ejaculate quality in spotted hyenas: intraspecific variation in relation to life-history traits. Journal of Mammalogy, 94, 90–9.CrossRefGoogle Scholar
Davis, W. H. (1966). Population dynamics of bat Pipistrellus subflavus. Journal of Mammalogy, 47, 383.CrossRefGoogle Scholar
Deevey, E. S. (1947). Life tables for natural populations of animals. Quarterly Review of Biology, 22, 283314.CrossRefGoogle ScholarPubMed
Delean, J. S. C. (2007). Longitudinal Population Demography of the Allied Rock Wallaby, Petrogale assimilis. Unpublished PhD dissertation, James Cook University, Australia.Google Scholar
de Magalhaes, J. P. & Costa, J. (2009). A database of vertebrate longevity records and their relation to other life-history traits. Journal of Evolutionary Biology, 22, 1770–4.CrossRefGoogle ScholarPubMed
de Magalhaes, J. P., Costa, J. & Church, G. M. (2007). Analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. Journals of Gerontology Series A, 62, 149–60.CrossRefGoogle ScholarPubMed
Delgiudice, G. D., Fieberg, J., Riggs, M. R., et al. (2006). A long-term age-specific survival analysis of female white-tailed deer. Journal of Wildlife Management, 70, 1556–68.CrossRefGoogle Scholar
DelGiudice, G. D., Lenarz, M. S. & Powell, M. C. (2007). Age-specific fertility and fecundity in northern free-ranging white-tailed deer: evidence for reproductive senescence? Journal of Mammalogy, 88, 427–35.CrossRefGoogle Scholar
Derocher, A. E. & Stirling, I. (1994). Age-specific reproductive performance of female polar bears (Ursus maritimus). Journal of Zoology, 234, 527–36.Google Scholar
Descamps, S., Boutin, S., Berteaux, D. & Gaillard, J.-M. (2007). Female red squirrels fit Williams’ hypothesis of increasing reproductive effort with increasing age. Journal of Animal Ecology, 76, 11921201.CrossRefGoogle ScholarPubMed
Dinerstein, E. (1991). Demography and habitat use by greater one-horned rhinoceros in Nepal. Journal of Wildlife Management, 55, 401–11.CrossRefGoogle Scholar
Dobson, F. S. (1992). Body mass, structural size, and life-history patterns of the Columbian ground squirrel. American Naturalist, 140, 109–25.CrossRefGoogle ScholarPubMed
Dugdale, H. L., Pope, L. C., Newman, C., et al. (2011). Age-specific breeding success in a wild mammalian population: selection, constraint, restraint and senescence. Molecular Ecology, 20, 3261–74.CrossRefGoogle Scholar
Dunbar, R. I. M. (1980). Demographic and life-history variables of a population of Gelada baboons (Theropithecus, gelada). Journal of Animal Ecology, 49, 485506.CrossRefGoogle Scholar
Eberhardt, L. L. (1985). Assessing the dynamics of wild populations. Journal of Wildlife Management, 49, 9971012.CrossRefGoogle Scholar
Emlen, J. M. (1970). Age specificity and ecological theory. Ecology, 51, 588601.CrossRefGoogle Scholar
Ericsson, G. & Wallin, K. (2001). Age-specific moose (Alces alces) mortality in a predator-free environment: evidence for senescence in females. Ecoscience, 8, 157–63.CrossRefGoogle Scholar
Ericsson, G., Wallin, K., Ball, J. P. & Broberg, M. (2001). Age-related reproductive effort and senescence in free-ranging moose, Alces alces. Ecology, 82, 1613–20.CrossRefGoogle Scholar
Evans, K. & Hindell, M. A. (2004). The age structure and growth of female sperm whales (Physeter macrocephalus) in southern Australian waters. Journal of Zoology, 263, 237–50.CrossRefGoogle Scholar
Festa-Bianchet, M., Gaillard, J.-M. & Côté, S. D. (2003). Variable age structure and apparent density dependence in survival of adult ungulates. Journal of Animal Ecology, 72, 640.CrossRefGoogle ScholarPubMed
Festa-Bianchet, M. & Côté, S. D. (2008). Mountain Goats: Ecology, Behavior, and Conservation of an Alpine Ungulate (Washington, DC: Island Press).Google Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection (Oxford: Clarendon Press).CrossRefGoogle Scholar
Flook, D. R. (1970). Causes and implications of an observed sex differential in the survival of wapiti. Canadian Wildlife Service Report, 11, 170.Google Scholar
Focardi, S., Gaillard, J.-M., Ronchi, F. & Rossi, S. (2008). Survival of wild boars in variable environments: unexpected life-history variation in an unusual ungulate. Journal of Mammalogy, 89, 1113–23.CrossRefGoogle Scholar
Foote, A. D. (2008). Mortality rate acceleration and post-reproductive lifespan in matrilineal whale species. Biology Letters, 4, 189–91.CrossRefGoogle ScholarPubMed
Fraga, C. G., Shigenaga, M. K., Park, J. W., et al. (1990). Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proceedings of the National Academy of Sciences of the United States of America, 87, 4533–7.Google ScholarPubMed
Gaillard, J.-M., Pontier, D., Allainé, D., et al. (1989). An analysis of demographic tactics in birds and mammals. Oikos, 56, 5976.CrossRefGoogle Scholar
Gaillard, J.-M., Liberg, O., Andersen, R., et al. (1998). Population dynamics of roe deer. In European Roe Deer: The Biology of Success (pp. 309–35), ed. Andersen, R., Duncan, P. & Linnell, J. D. C. (Oslo: Scandinavian University Press).Google Scholar
Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N. G., et al. (2000). Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics, 31, 367–93.CrossRefGoogle Scholar
Gaillard, J.-M., Duncan, P., Delorme, D., et al. (2003). Effects of hurricane Lothar on the population dynamics of European roe deer. Journal of Wildlife Management, 67, 767–73.CrossRefGoogle Scholar
Gaillard, J.-M., Loison, A., Festa-Bianchet, M., et al. (2003). Ecological correlates of life span in populations of large herbivorous mammals. Population & Development Review, 29, 3956.Google Scholar
Gaillard, J.-M., Viallefont, A., Loison, A. & Festa-Bianchet, M. (2004). Assessing senescence patterns in populations of large mammals. Animal Biodiversity and Conservation, 27, 4758.Google Scholar
Gaillard, J.-M., Yoccoz, N. G., Lebreton, J.-D., et al. (2005). Generation time: a reliable metric to measure life‐history variation among mammalian populations. American Naturalist, 166, 119–23.CrossRefGoogle Scholar
Gaillard, J.-M., Hewison, A. J. M., Klein, F., et al. (2013). How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecology Letters, 16, 4857.CrossRefGoogle ScholarPubMed
Gamelon, M., Focardi, S., Gaillard, J.-M., et al. (2014). Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence? Evolution, 68, 3636–43.CrossRefGoogle ScholarPubMed
Garratt, M., Gaillard, J.-M., Brooks, R. C. & Lemaître, J. F. (2013). Diversification of the eutherian placenta is associated with changes in the pace of life. Proceedings of the National Academy of Sciences of the United States, 110, 7760–5.CrossRefGoogle ScholarPubMed
Garrott, R. A. & Taylor, L. (1990). Dynamics of a feral horse population in Montana. Journal of Wildlife Management, 54, 603–12.CrossRefGoogle Scholar
Garrott, R. A., Eagle, T. C. & Plotka, E. D. (1991). Age-specific reproduction in feral horses. Canadian Journal of Zoology, 69, 738–43.CrossRefGoogle Scholar
Garrott, R. A., Eberhardt, L. L., White, P. J. & Rotella, J. (2003). Climate-induced variation in vital rates of an unharvested large-herbivore population. Canadian Journal of Zoology, 81, 3345.CrossRefGoogle Scholar
Gimenez, O., Viallefont, A., Charmantier, A., et al. (2008). The risk of flawed inference in evolutionary studies when detectability is less than one. American Naturalist, 172, 441–8.CrossRefGoogle ScholarPubMed
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new model of determining life contingencies. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 115, 513–85.Google Scholar
Graham, A. L., Hayward, A. D., Watt, K. A., et al. (2010). Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science, 330, 662–5.CrossRefGoogle Scholar
Green, W. C. H. (1990). Reproductive effort and associated costs in bison (Bison bison): do older mothers try harder? Behavioral Ecology, 1, 148–60.CrossRefGoogle Scholar
Hadley, G. L., Rotella, J. J. & Garrott, R. A. (2007). Evaluation of reproductive costs for Weddell seals in Erebus Bay, Antarctica. Journal of Animal Ecology, 76, 448–58.CrossRefGoogle ScholarPubMed
Hämäläinen, A., Dammhahn, M., Aujard, F., et al. (2015). Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of a small-bodied primate. Proceedings of the Royal Society of London Series B: Biological Sciences, 281, 20140830.Google Scholar
Hamel, S., Craine, J. M. & Towne, E. G. (2012). Maternal allocation in bison: co-occurrence of senescence, cost of reproduction, and individual quality. Ecological Applications, 22, 1628–39.Google ScholarPubMed
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hanks, J. (1972). Reproduction of elephant, Loxodonta africana, in Luangwa Valley, Zambia. Journal of Reproduction and Fertility, 30, 1326.CrossRefGoogle ScholarPubMed
Harting, A. L., Baker, J. D. & Johanos, T. C. (2007). Reproductive patterns of the Hawaiian monk seal. Marine Mammal Science, 23, 553–73.CrossRefGoogle Scholar
Hayward, A. D., Wilson, A. J., Pilkington, J. G., et al. (2009). Ageing in a variable habitat: environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 3477–85.Google Scholar
Hayward, A. D., Wilson, A. J., Pilkington, J. G., et al. (2013). Reproductive senescence in female Soay sheep: variation across traits and contributions of individual ageing and selective disappearance. Functional Ecology, 27, 184–95.CrossRefGoogle Scholar
Hayward, A. D., Mar, K. U., Lahdenperä, M. & Lummaa, V. (2014). Early reproductive investment, senescence and lifetime reproductive success in female Asian elephants. Journal of Evolutionary Biology, 27, 772–83.CrossRefGoogle ScholarPubMed
Hayward, A. D., Moorad, J., Regan, C. E., et al. (2015). Asynchrony of senescence among phenotypic traits in a wild mammal population. Experimental Gerontology, 71, 5668.CrossRefGoogle Scholar
Heard, D., Barry, S., Watts, G. & Child, K. (1997). Fertility of female moose (Alces alces) in relation to age and body composition. Alces, 33, 165–76.Google Scholar
Hernandez-Camacho, C. J., Aurioles-Gamboa, D. & Gerber, L. R. (2008a). Age-specific birth rates of California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Marine Mammal Science, 24, 664–76.CrossRefGoogle Scholar
Hernandez-Camacho, C. J., Aurioles-Gamboa, D., Laake, J. & Gerber, L. R. (2008b). Survival rates of the California sea lion, Zalophus californianus, in Mexico. Journal of Mammalogy, 89, 1059–66.CrossRefGoogle Scholar
Hewison, A. J. M. & Gaillard, J.-M. (2001). Phenotypic quality and senescence affect different components of reproductive output in roe deer. Journal of Animal Ecology, 70, 600–8.CrossRefGoogle Scholar
Hibly, A. R. & Mullen, A. J. (1980). Simultaneous determination of fluctuating age structure and mortality from field data. Theoretical Population Biology, 18, 192203.CrossRefGoogle Scholar
Hindle, A. G., Horning, M., Mellish, J.-A. E. & Lawler, J. M. (2009a). Diving into old age: muscular senescence in a large-bodied, long-lived mammal, the Weddell seal (Leptonychotes weddellii). Journal of Experimental Biology, 212, 790–6.CrossRefGoogle Scholar
Hindle, A. G., Lawler, J. M., Campbell, K. L. & Horning, M. (2009b). Muscle senescence in short-lived wild mammals, the soricine shrews Blarina brevicauda and Sorex palustris. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311A, 358–67.Google Scholar
Hindle, A. G., Lawler, J. M., Campbell, K. L. & Horning, M. (2010). Muscle aging and oxidative stress in wild-caught shrews. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 155, 427–34.CrossRefGoogle ScholarPubMed
Hoffman, C. L., Higham, J. P., Mas-Rivera, A., et al. (2010). Terminal investment and senescence in rhesus macaques (Macaca mulatta) on Cayo Santiago. Behavioral Ecology, 21, 972–8.CrossRefGoogle ScholarPubMed
Holmes, E. E., Fritz, L. W., York, A. E. & Sweeney, K. (2007). Age-structured modeling reveals long-term declines in the natality of western Steller sea lions. Ecological Applications, 17, 2214–32.CrossRefGoogle ScholarPubMed
Isaac, J. L. & Johnson, C. N. (2005). Terminal reproductive effort in a marsupial. Biology Letters, 1, 271–5.CrossRefGoogle Scholar
Jégo, M., Lemaître, J. F., Bourgoin, G., et al. (2014). Haematological parameters do senesce in the wild: evidence from different populations of a long-lived mammal. Journal of Evolutionary Biology, 27, 2745–52.CrossRefGoogle ScholarPubMed
Jones, O. R., Gaillard, J.-M., Tuljapurkar, S., et al. (2008). Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecology Letters, 11, 664–73.CrossRefGoogle ScholarPubMed
Jorgenson, J. T., Festa-Bianchet, M., Gaillard, J.-M. & Wishart, W. D. (1997). Effects of age, sex, disease, and density on survival of bighorn sheep. Ecology, 78, 1019–32.CrossRefGoogle Scholar
Juškaitis, R. (2008). The Common Dormouse Muscardinus avellanarius: Ecology, Population Structure and Dynamics (Institute of Ecology of Vilnius University).Google Scholar
Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270, 301–4.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Austad, S. N. (2000). Why do we age? Nature, 408, 233–8.CrossRefGoogle ScholarPubMed
Koons, D. N., Gamelon, M., Gaillard, J.-M., et al. (2014). Methods for studying cause-specific senescence in the wild. Methods in Ecology and Evolution, 5, 924–33.CrossRefGoogle Scholar
Koyama, N., Takahata, Y., Huffman, M. A., et al. (1992). Reproductive parameters of female Japanese macaques: 30 years data from the Arashyiama troops, Japan. Primates, 33, 3347.CrossRefGoogle Scholar
Lander, R. H. (1981). A life table and biomass estimate for Alaskan fur seals. Fisheries Research, 1, 5570.CrossRefGoogle Scholar
Lawrence, R. K., Demarais, S., Relyea, R. A., et al. (2004). Desert mule deer survival in southwest Texas. Journal of Wildlife Management, 68, 561–9.CrossRefGoogle Scholar
Leader-Williams, N. (1988). Reindeer on South Georgia (Cambridge University Press).Google Scholar
Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs, 62, 67118.CrossRefGoogle Scholar
Lee, D. E. & Tietje, W. D. (2005). Dusky-footed woodrat demography and prescribed fire in a California oak woodland. Journal of Wildlife Management, 69, 1211–20.CrossRefGoogle Scholar
Leigh, S. R., Setchell, J.-M., Charpentier, M., et al. (2008). Canine tooth size and fitness in male mandrills (Mandrillus sphinx). Journal of Human Evolution, 55, 7585.CrossRefGoogle ScholarPubMed
Lemaître, J. F. & Gaillard, J.-M. (2013a). Polyandry has no detectable mortality cost in female mammals. PloS ONE, 8, e66670.CrossRefGoogle Scholar
Lemaître, J. F. & Gaillard, J.-M (2013b). Male survival patterns do not depend on male allocation to sexual competition in large herbivores. Behavioral Ecology, 24, 421–8.CrossRefGoogle Scholar
Lemaître, J. F., Gaillard, J.-M., Lackey, L. B., et al. (2013). Comparing free-ranging and captive populations reveals intra-specific variation in aging rates in large herbivores. Experimental Gerontology, 48, 162–7.CrossRefGoogle ScholarPubMed
Lemaître, J. F., Gaillard, J.-M., Pemberton, J. M., et al. (2014). Early life expenditure in sexual competition is associated with increased reproductive senescence in male red deer. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140792.Google ScholarPubMed
Lemaître, J. F., Berger, V., Bonenfant, C., Douhard, M., Gamelon, M., et al. (2015). Early-late life trade-offs and the evolution of ageing in the wild. Proceedings of the Royal Society of London Series B: Biological Sciences, 282, 20150209.Google ScholarPubMed
Lima, M. & Paez, E. (1997). Demography and population dynamics of South American fur seals. Journal of Mammalogy, 78, 914–20.CrossRefGoogle Scholar
Lindstedt, S. L. & Calder, W. A. (1981). Body size, physiological time, and longevity of homeothermic animals. Quarterly Review of Biology, 56, 116.CrossRefGoogle Scholar
Loison, A., Festa-Bianchet, M., Gaillard, J.-M., et al. (1999). Age-specific survival in five populations of ungulates: evidence of senescence. Ecology, 80, 2539–54.CrossRefGoogle Scholar
Lunn, N. J., Boyd, I. L. & Croxall, J. P. (1994). Reproductive performance of female Antarctic fur seals: the influence of age, breeding experience, environmental variation and individual quality. Journal of Animal Ecology, 63, 827–40.CrossRefGoogle Scholar
Lynch, H. J. & Fagan, W. F. (2009). Survivorship curves and their impact on the estimation of maximum population growth rates. Ecology, 90, 1116–24.CrossRefGoogle ScholarPubMed
Maizels, R. M. & Nussey, D. H. (2013). Into the wild: digging at immunology’s evolutionary roots. Nature Immunology, 14, 879–83.CrossRefGoogle ScholarPubMed
McAdam, A. G., Boutin, S., Sykes, A. K. & Humphries, M. M. (2007). Life histories of female red squirrels and their contributions to population growth and lifetime fitness. Ecoscience, 14, 362–9.CrossRefGoogle Scholar
McCullough, D. R. (1979). The George Reserve Deer Herd: Population Ecology of a K-Selected Species (Ann Arbor: University of Michigan Press).Google Scholar
McDonald, J. L., Smith, G. C., McDonald, R. A., et al. (2014). Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife-disease interactions. Proceedings of the Royal Society of London Series B: Biological Sciences, 281, 20140526.Google ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Menkens, G. E. & Boyce, M. S. (1993). Comments on the use of time-specific and cohort life tables. Ecology, 74, 2164–8.CrossRefGoogle Scholar
Millar, J. S. (1994). Senescense in a population of small mammals? Ecoscience, 1, 317–21.CrossRefGoogle Scholar
Milner, J. M., Stien, A., Irvine, R. J., et al. (2003). Body condition in Svalbard reindeer and the use of blood parameters as indicators of condition and fitness. Canadian Journal of Zoology, 81, 1566–78.CrossRefGoogle Scholar
Milot, E., Cohen, A. A., Vézina, F., et al. (2014). A novel integrative method for measuring body condition in ecological studies based on physiological dysregulation. Methods in Ecology and Evolution, 5, 146–55.CrossRefGoogle Scholar
Monteith, K. L., Bleich, V. C., Stephenson, T. R., et al. (2014). Life-history characteristics of mule deer: effects of nutrition in a variable environment. Wildlife Monographs, 186, 162.CrossRefGoogle Scholar
Moore, J. E. & Read, A. J. (2008). A Bayesian uncertainty analysis of cetacean demography and bycatch mortality using age-at-death data. Ecological Applications, 18, 1914–31.CrossRefGoogle ScholarPubMed
Morris, D. W. (1996). State-dependent life history and senescence of white-footed mice. Ecoscience, 3, 16.Google Scholar
Müller, D. W. H., Gaillard, J.-M., Lackey, L. B., et al. (2010). Comparing life expectancy of three deer species between captive and wild populations. European Journal of Wildlife Research, 56, 205–8.CrossRefGoogle Scholar
Murie, A. (1944). The Wolves of Mount McKinley (Washington, DC: US Department Interior, National Park Service).Google Scholar
Mysterud, A., Yoccoz, N. G., Stenseth, N. C. & Langvatn, R. (2001). Effects of age, sex and density on body weight of Norwegian red deer: evidence of density-dependence. Proceedings of the Royal Society of London Series B: Biological Sciences, 268, 911–19.CrossRefGoogle Scholar
Mysterud, A., Meisingset, E., Langvatn, R., et al. (2005). Climate-dependent allocation of resources to secondary sexual traits in red deer. Oikos, 111, 245–52.CrossRefGoogle Scholar
Neuhaus, P. & Pelletier, N. (2001). Mortality in relation to season, age, sex, and reproduction in Columbian ground squirrels (Spermophilus columbianus). Canadian Journal of Zoology, 79, 465–70.CrossRefGoogle Scholar
Nichols, J. D. (1992). Capture-recapture models. Bioscience, 42, 94102.CrossRefGoogle Scholar
Nishida, T., Corp, N., Hamai, M., et al. (2003). Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. American Journal of Primatology, 59, 99121.CrossRefGoogle ScholarPubMed
Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. (2007). Environmental conditions in early life influence ageing rates in a wild population of red deer. Current Biology, 17, R1000–1.CrossRefGoogle Scholar
Nussey, D. H., Kruuk, L. E. B., Morris, A., et al. (2009a). Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. American Naturalist, 174, 342–57.CrossRefGoogle Scholar
Nussey, D. H., Pemberton, J. M., Pilkington, J. G. & Blount, J. D. (2009b). Life history correlates of oxidative damage in a free-living mammal population. Functional Ecology, 23, 809–17.CrossRefGoogle Scholar
Nussey, D. H., Coulson, T., Delorme, D., et al. (2011). Patterns of body mass senescence and selective disappearance differ among three species of free-living ungulates. Ecology, 92, 1936–47.CrossRefGoogle ScholarPubMed
Nussey, D. H., Watt, K., Pilkington, J. G., et al. (2012). Age-related variation in immunity in a wild mammal population. Aging Cell, 11, 178–80.CrossRefGoogle Scholar
Nussey, D. H., Froy, H., Lemaitre, J. F., et al. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Oleziuk, P. F., Bigg, M. A. & Ellis, G. M. (1990). Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Report of the International Whaling Commission, 12, 209–43.Google Scholar
Owen-Smith, N. (1990). Demography of a large herbivore, the greater kudu Tragelaphus strepsiceros, in relation to rainfall. Journal of Animal Ecology, 59, 893913.CrossRefGoogle Scholar
Packer, C., Tatar, M. & Collins, A. (1998). Reproductive cessation in female mammals. Nature, 392, 807–11.CrossRefGoogle ScholarPubMed
Paul, A., Kuester, J. & Podzuweit, D. (1993). Reproductive senescence and terminal investment in female Barbary macaques (Macaca sylvanus) at Salem. International Journal of Primatology, 14, 105–24.CrossRefGoogle Scholar
Péron, G., Gimenez, O., Charmantier, A., et al. (2010). Age at the onset of senescence in birds and mammals is predicted by early-life performance. Proceedings of the Royal Society of London Series B: Biological Sciences, 277, 28493285.Google ScholarPubMed
Péron, G., Gaillard, J.-M., Barbraud, C., Bonenfant, C., Charmantier, A., et al. (2016). Evidence of reduced heterogeneity in adult survival of long-lived species. Evolution 70, 29092914.CrossRefGoogle ScholarPubMed
Pielowski, Z. (1984). Some aspects of population structure and longevity of field roe deer. Acta Theriologica, 29, 1733.CrossRefGoogle Scholar
Proffitt, K. M., Garrott, R. A., Rotella, J. J. & Wheatley, K. E. (2007). Environmental and senescent related variations in Weddell seal body mass: implications for age-specific reproductive performance. Oikos, 116, 1683–90.Google Scholar
Promislow, D. E. L. (1991). Senescence in natural populations of mammals: a comparative study. Evolution, 45, 1869–87.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. & Harvey, P. H. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, 220, 417–37.CrossRefGoogle Scholar
Promislow, D. E. L., Fedorka, K. M. & Burger, J. M. S. (2006). Evolutionary biology of aging: future directions. In Handbook of the Biology of Aging, eds. Masoro, E. J. & Austad, S. N (pp. 217–42). (Burlington, MA: Academic Press).Google Scholar
Pyne, M. I., Byrne, K. M., Holfelder, K. A., et al. (2010). Survival and breeding transitions for a reintroduced bison population: a multistate approach. Journal of Wildlife Management, 74, 1463–71.CrossRefGoogle Scholar
Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. (2002). Life in the slow lane? Demography and life histories of male and female sifaka (Propithecus verreauxi verreauxi). Journal of Zoology, 256, 421–36.CrossRefGoogle Scholar
Ricklefs, R. E. (2010). Life-history connections to rates of aging in terrestrial vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 107, 10314–19.Google ScholarPubMed
Robbins, A. M., Robbins, M. M., Gerald-Steklis, N. & Steklis, H.D. (2006). Age-related patterns of reproductive success among female mountain gorillas. American Journal of Physical Anthropology, 131, 511–21.CrossRefGoogle ScholarPubMed
Robinson, M. R., Pilkington, J. G., Clutton-Brock, T. H., et al. (2006). Live fast, die young: trade-offs between fitness components and sexually antagonistic selection on weaponry in Soay sheep. Evolution, 60, 2168–81.Google ScholarPubMed
Robinson, M. R., Mar, K. U. & Lummaa, V. (2012). Senescence and age-specific trade-offs between reproduction and survival in female Asian elephants. Ecology Letters, 15, 260–6.CrossRefGoogle ScholarPubMed
Rotella, J. J., Link, W. A., Chambert, T., et al. (2012). Evaluating the demographic buffering hypothesis with vital rates estimated for Weddell seals from 30 years of mark-recapture data. Journal of Animal Ecology, 81, 162–73.CrossRefGoogle ScholarPubMed
Rodgers, W. A. (1984). Warthog ecology in South East Tanzania. Mammalia, 48, 327–50.CrossRefGoogle Scholar
Sacher, G. A. (1959). Relation of life span to brain weight and body weight in mammals. In The Lifespan of Animals (CIBA Foundation: Colloquia on Aging, Vol. 5, pp. 115–33) (Hoboken, NJ: Wiley).Google Scholar
Sadleir, R. M. F. S. (1969). The Ecology of Reproduction in Wild and Domestic Animals (London: Methuen).Google Scholar
Saltz, D. (1996). Minimizing extinction probability due to demographic stochasticity in a reintroduced herd of Persian fallow deer Dama dama mesopotamica. Biological Conservation, 75, 2733.CrossRefGoogle Scholar
Schwartz, C. C., Keating, K. A., Reynolds, H. V., et al. (2003). Reproductive maturation and senescence in the female brown bear. Ursus, 14, 109–19.Google Scholar
Seber, G. A. F. (1973). The Estimation of Animal Abundance and Related Parameters (London: Griffin).Google Scholar
Selman, C., Blount, J. D., Nussey, D. H. & Speakman, J. R. (2012). Oxidative damage, ageing, and life-history evolution: where now? Trends in Ecology and Evolution, 27, 570–7.CrossRefGoogle ScholarPubMed
Sharp, S. P. & Clutton-Brock, T. H. (2010). Reproductive senescence in a cooperatively breeding mammal. Journal of Animal Ecology, 79, 176–83.CrossRefGoogle Scholar
Sibly, R. M., Collett, D., Promislow, D. E. L., et al. (1997). Mortality rates of mammals. Journal of Zoology, 243, 112.CrossRefGoogle Scholar
Sierra, E., Fernandez, A., de los Monteros, A. E., et al. (2013). Muscular senescence in cetaceans: adaptation towards a slow muscle fibre phenotype. Scientific Reports, 3, 1795.CrossRefGoogle ScholarPubMed
Siler, W. (1979). Competing-risk model for animal mortality. Ecology, 60, 750–7.CrossRefGoogle Scholar
Sinclair, A. R. E. (1977). The Africa Buffalo: A Study of Resource Limitation of Populations (University of Chicago Press).Google Scholar
Slade, N. A. (1995). Failure to detect senescence in persistence of some grassland rodents. Ecology, 76, 863–70.CrossRefGoogle Scholar
Slade, N. A. & Balph, D. F. (1974). Population ecology of Uinta ground squirrels. Ecology, 55, 9891003.CrossRefGoogle Scholar
Smith, C. C. & Fretwell, S. D. (1974). Optimal balance between size and number of offspring. American Naturalist, 108, 499506.CrossRefGoogle Scholar
Sohal, R. S., Agarwal, S. & Sohal, B. H. (1995). Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus). Mechanisms of Ageing and Development, 81, 1525.CrossRefGoogle ScholarPubMed
Spinage, C. A. (1972). African ungulates life tables. Ecology, 53, 645–52.CrossRefGoogle Scholar
Stadtman, E. R. (1992). Protein oxidation and aging. Science, 257, 1220–4.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1983). The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos, 41, 173–87.CrossRefGoogle Scholar
Stearns, S. C. (1992). The Evolution of Life Histories (Oxford University Press).Google Scholar
Sugiyama, Y. (1994). Age-specific birth rate and lifetime reproductive success of chimpanzees at Bossou, Guinea. American Journal of Primatology, 32, 311–18.CrossRefGoogle ScholarPubMed
Sussman, R. W. (1991). Demography and social organization of free-ranging Lemur catta in the Beza-Mahafaly Reserve, Madagascar. American Journal of Physical Anthropology, 84, 4358.CrossRefGoogle Scholar
Sydeman, W. J., Huber, H. R., Emslie, S. D., et al. (1991). Age-specific weaning success of Northern elephant seals in relation to previous breeding experience. Ecology, 72, 2204–17.CrossRefGoogle Scholar
Tafani, M., Cohas, A., Bonenfant, C., et al. (2013). Decreasing litter size of marmots over time: a life history response to climate change? Ecology, 94, 580–6.CrossRefGoogle Scholar
Tettamanti, F., Grignolio, S., Filli, F., et al. (2015). Senescence in breeding success of Alpine chamois (Rupicapra rupicapra): the role of female quality and age. Oecologia, 178, 187–95.CrossRefGoogle ScholarPubMed
Thomas, D. C. & Barry, S. J. (1990). A life table for female barren-ground caribou in North Central Canada. Rangifer, 3, 177–84.Google Scholar
Thongtip, N., Saikhun, J., Mahasawangkul, S., et al. (2008). Potential factors affecting semen quality in the Asian elephant (Elephas maximus). Reproductive Biology and Endocrinology, 6, 9.CrossRefGoogle ScholarPubMed
Tidière, M., Gaillard, J.-M., Muller, D. W. H., et al. (2014). Males do not senesce faster in large herbivores with highly seasonal rut. Experimental Gerontology, 60, 167–72.CrossRefGoogle Scholar
Tinker, M. T., Doak, D. F., Estes, J. A., et al. (2006). Incorporating diverse data and realistic complexity into demographic estimation procedures for sea otters. Ecological Applications, 16, 22932312.CrossRefGoogle ScholarPubMed
Toïgo, C., Gaillard, J.-M., Gauthier, D., et al. (2002). Female reproductive success and costs in a temperate capital breeder: the effect of contrasting environmental conditions. Ecoscience, 9, 427–33.Google Scholar
Toïgo, C. & Gaillard, J.-M. (2003). Causes of sex-biased adult survival in ungulates: sexual size dimorphism, mating tactic or environmental harshness? Oikos, 101, 376–84.CrossRefGoogle Scholar
Toïgo, C., Gaillard, J.-M., van Laere, G., et al. (2006). How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography, 29, 301–8.CrossRefGoogle Scholar
Toïgo, C., Gaillard, J.-M., Festa-Bianchet, M., et al. (2007). Sex- and age-specific survival of the highly dimorphic alpine ibex: evidence for a conservative life-history tactic. Journal of Animal Ecology, 76, 679–86.CrossRefGoogle ScholarPubMed
Valcu, M., Dale, J., Griesser, M., Nakagawa, S. & Kempenaers, B. (2014). Global gradients of avian longevity support the classic evolutionary theory of ageing. Ecography, 37, 930–8.CrossRefGoogle Scholar
Van Noordwijk, A. J. & de Jong, G. (1986). Acquisition and allocation of resources: their influence on variation in life history tactics. American Naturalist, 128, 137–42.CrossRefGoogle Scholar
van de Pol, M. & Verhulst, S. (2006). Age-dependent traits: a new statistical model to separate within- and between-individual effects. American Naturalist, 167, 766–73.CrossRefGoogle ScholarPubMed
van de Pol, M. & Wright, J. (2009). A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour, 77, 753–8.CrossRefGoogle Scholar
Vanpé, C., Gaillard, J.-M., Kjellander, P., et al. (2007). Antler size provides an honest signal of male phenotypic quality in roe deer. American Naturalist, 169, 481–93.CrossRefGoogle ScholarPubMed
Vanpé, C., Gaillard, J.-M., Kjellander, P., et al. (2010). Assessing the intensity of sexual selection on male body mass and antler length in roe deer Capreolus capreolus: is bigger better in a weakly dimorphic species? Oikos, 119, 1484–92.CrossRefGoogle Scholar
Vasilaki, A., McArdle, F., Iwanejko, L. M. & McArdle, A. (2006). Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mechanisms of Ageing and Development, 127, 830–9.CrossRefGoogle ScholarPubMed
Vaupel, J. W. & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population dynamics. American Statistician, 39, 176–85.Google ScholarPubMed
Vincent, J. P., Angibault, J. M., Bideau, E. & Gaillard, J.-M. (1994). Problem of age determination: overlooked source of error in vertical life table calculations [in French]. Mammalia, 58, 293–9.Google Scholar
Walker, M. L., & Herndon, J. G. (2010). Mosaic aging. Medical Hypotheses, 74, 1048–51.CrossRefGoogle ScholarPubMed
Weladji, R. B., Loison, A., Gaillard, J.-M., et al. (2008). Heterogeneity in individual quality overrides costs of reproduction in female reindeer. Oecologia, 156, 237–47.CrossRefGoogle ScholarPubMed
Weladji, R. B., Holand, O., Gaillard, J.-M., et al. (2010). Age-specific changes in different components of reproductive output in female reindeer: terminal allocation or senescence? Oecologia, 162, 261–71.CrossRefGoogle ScholarPubMed
Whitehouse, A. M. & Hall-Martin, A. J. (2000). Elephants in Addo Elephant National Park, South Africa: reconstruction of the population’s history. Oryx, 34, 4655.CrossRefGoogle Scholar
Wilder, S. M., Le Couteur, D. G. & Simpson, S. J. (2013). Diet mediates the relationship between longevity and reproduction in mammals. Age, 35, 921–7.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Williams, P. D., Day, T., Fletcher, Q. & Rowe, L. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21, 458–63.CrossRefGoogle ScholarPubMed
Wilson, A. J. & Nussey, D. N. (2010). What is individual quality? An evolutionary perspective. Trends in Ecology and Evolution, 25, 207–14.CrossRefGoogle ScholarPubMed
Wilson, G. A., Olson, W. & Strobeck, C. (2002). Reproductive success in wood bison (Bison bison athabascae) established using molecular techniques. Canadian Journal of Zoology, 80, 1537–48.CrossRefGoogle Scholar
Wolfe, L. D. & Noyes, M. J. S. (1981). Reproductive senescence among female Japanese macaques (Macaca fuscata fuscata). Journal of Mammalogy, 62, 698705.CrossRefGoogle Scholar
Woolley, P. A. (1991). Reproduction in Dasykaluta rosamondae (Marsupiala, Dasyuridae): field and laboratory observations. Australian Journal of Zoology, 39, 549–68.CrossRefGoogle Scholar

References

Aubry, L. M., Cam, E., Koons, D. N., et al. (2011). Drivers of age-specific survival in a long-lived seabird: contributions of observed and hidden sources of heterogeneity. Journal of Animal Ecology, 80, 375–83.CrossRefGoogle Scholar
Aubry, L. M., Koons, D. N., Monnat, J. Y. & Cam, E. (2009). Consequences of recruitment decisions and heterogeneity on age-specific breeding success in a long-lived seabird. Ecology, 90, 24912502.CrossRefGoogle Scholar
Auld, J. R. & Charmantier, A. (2011). Life history of breeding partners alters age-related changes of reproductive traits in a natural population of blue tits. Oikos, 120, 1129–38.CrossRefGoogle Scholar
Auld, J. R., Perrins, C. M. & Charmantier, A. (2013). Who wears the pants in a mute swan pair? Deciphering the effects of male and female age and identity on breeding success. Journal of Animal Ecology, 82, 826–35.CrossRefGoogle Scholar
Balbontín, J., de Lope, F., Hermosell, I. G., et al. (2011). Determinants of age-dependent change in a secondary sexual character. Journal of Evolutionary Biology, 24, 440–8.CrossRefGoogle Scholar
Balbontín, J., Hermosell, I. G., Marzal, A., et al. (2007). Age-related change in breeding performance in early life is associated with an increase in competence in the migratory barn swallow Hirundo rustica. Journal of Animal Ecology, 76, 915–25.CrossRefGoogle ScholarPubMed
Balbontín, J., Møller, A. P., Hermosell, I. G., et al. (2012a). Geographical variation in reproductive ageing patterns and life-history strategy of a short-lived passerine bird. Journal of Evolutionary Biology, 25, 22982309.CrossRefGoogle ScholarPubMed
Balbontín, J., Møller, A. P., Hermosell, I. G., et al. (2012b). Lifetime individual plasticity in body condition of a migratory bird. Biological Journal of the Linnean Society, 105, 420–34.CrossRefGoogle Scholar
Barrett, E. L. B., Burke, T. A., Hammers, M., et al. (2013). Telomere length and dynamics predict mortality in a wild longitudinal study. Molecular Ecology, 22, 249–59.CrossRefGoogle Scholar
Bennett, P. M. & Owens, I. P. F. (2002). Evolutionary Ecology of Birds (Oxford University Press).CrossRefGoogle Scholar
Bize, P., Cotting, S., Devevey, G., et al. (2014). Senescence in cell oxidative status in two bird species with contrasting life expectancy. Oecologia, 174, 10971105.CrossRefGoogle ScholarPubMed
Blas, J., Sergio, F. & Hiraldo, F. (2009). Age-related improvement in reproductive performance in a long-lived raptor: a cross-sectional and longitudinal study. Ecography, 32, 647–57.CrossRefGoogle Scholar
Bonduriansky, R. & Brassil, C. E. (2002). Rapid and costly ageing in wild male flies. Nature, 420, 377–9.CrossRefGoogle ScholarPubMed
Boonekamp, J. J., Salomons, M., Bouwhuis, S., et al. (2014). Reproductive effort accelerates actuarial senescence in wild birds: an experimental study. Ecology Letters, 17, 599605.CrossRefGoogle ScholarPubMed
Bosman, D. S., Vercruijsse, H. J. P., Stienen, E. W. M., et al. (2013). Age of first breeding interacts with pre- and post-recruitment experience in shaping breeding phenology in a long-lived gull. PLoS ONE, 8(12), e82093.CrossRefGoogle Scholar
Botkin, D. B. & Miller, R. S. (1974). Mortality rates and survival of birds. American Naturalist, 108, 181–92.CrossRefGoogle Scholar
Bouwhuis, S., Charmantier, A., Verhulst, S. & Sheldon, B.C. (2010a). Individual variation in rates of senescence: natal origin effects and disposable soma in a wild bird population. Journal of Animal Ecology, 79, 1251–61.CrossRefGoogle Scholar
Bouwhuis, S., Charmantier, A., Verhulst, S. & Sheldon, B. C. (2010b). Trans-generational effects on ageing in a wild bird population. Journal of Evolutionary Biology, 23, 636–42.CrossRefGoogle Scholar
Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. (2012). The forms and fitness cost of senescence: age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. American Naturalist, 179, E1527.CrossRefGoogle Scholar
Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. (2009). Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 2769–77.Google ScholarPubMed
Bouwhuis, S., van Noordwijk, A. J., Sheldon, B. C., et al. (2010c). Similar patterns of age-specific reproduction in an island and mainland population of great tits Parus major. Journal of Avian Biology, 41, 615–20.Google Scholar
Bouwhuis, S., Vedder, O. & Becker, P. H. (2015). Sex-specific pathways of parental age effects on offspring lifetime reproductive success in a long-lived seabird. Evolution, 69, 1760–71.CrossRefGoogle Scholar
Breton, A. R., Nisbet, I. C. T., Mostello, C. S. & Hatch, J. J. (2014). Age-dependent breeding dispersal and adult survival within a metapopulation of common terns Sterna hirundo. Ibis, 156, 534–47.CrossRefGoogle Scholar
Broggi, J., Hohtola, E., Koivula, K., et al. (2010). Idle slow as you grow old: longitudinal age-related metabolic decline in a wild passerine. Evolutionary Ecology, 24, 177–84.CrossRefGoogle Scholar
Brown, W. P. & Roth, R. R. (2009). Age-specific reproduction and survival of individually marked wood thrushes, Hylocichla mustelina. Ecology, 90, 218–29.CrossRefGoogle ScholarPubMed
Brunet-Rossinni, A. K. & Austad, S. N. (2006). Senescence in wild populations of mammals and birds. In Handbook of the Biology of Aging, ed. Masoro, E. J. & Austad, S. N. pp. 243–66). (Burlington MA: Academic Press).Google Scholar
Cam, E., Link, W. A., Cooch, E. G., et al. (2002). Individual covariation in life-history traits: seeing the trees despite the forest. American Naturalist, 159, 96105.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H. & Sheldon, B. C. (2010). Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends in Ecology and Evolution, 25, 562–73.CrossRefGoogle ScholarPubMed
Cornwallis, C. K., Dean, R. & Pizzari, T. (2014). Sex-specific patterns of aging in sexual ornaments and gametes. American Naturalist, 184, E6678.CrossRefGoogle ScholarPubMed
Dean, R., Cornwallis, C. K., Løvlie, H., et al. (2010). Male reproductive senescence causes potential for sexual conflict over mating. Current Biology, 20, 1192–6.CrossRefGoogle ScholarPubMed
DuVal, E. H. (2012). Variation in annual and lifetime reproductive success of lance-tailed manakins: alpha experience mitigates effects of senescence on siring success. Proceedings of the Royal Society of London Series B: Biological Sciences, 279, 1551–9.Google ScholarPubMed
Eising, C. (2004). Mother knows best? Costs and benefits of differential maternal hormone allocation in birds. PhD thesis, University of Groningen.Google Scholar
Evans, S. R., Gustafsson, L. & Sheldon, B. C. (2011). Divergent patterns of age-dependence in ornamental and reproductive traits in the collared flycatcher. Evolution, 65, 1623–36.CrossRefGoogle ScholarPubMed
Evans, S. R. & Sheldon, B. C. (2013). Pigments versus structure: examining the mechanism of age-dependent change in a carotenoid-based colour. Journal of Animal Ecology, 82, 418–28.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection (Oxford: Clarendon Press).CrossRefGoogle Scholar
Forslund, P. & Pärt, T. (1995). Age and reproduction in birds: hypotheses and tests. Trends in Ecology and Evolution, 10, 374–8.CrossRefGoogle ScholarPubMed
Froy, H., Phillips, R. A., Wood, A. G., et al. (2013). Age-related variation in reproductive traits in the wandering albatross: evidence for terminal improvement following senescence. Ecology Letters, 16, 642–9.CrossRefGoogle ScholarPubMed
Groothuis, T. G. G., Müller, W., von Engelhardt, N., et al. (2005). Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuroscience and Biobehavioral Reviews, 29, 329–52.CrossRefGoogle ScholarPubMed
Gustafsson, L. & Pärt, T. (1990). Acceleration of senescence in the collared flycatcher Ficedula albicollis by reproductive costs. Nature, 347, 279–81.CrossRefGoogle Scholar
Hager, R., Cheverud, J. M. & Wolf, J. B. (2009). Change in maternal environment induced by cross-fostering alters genetic and epigenetic effects on complex traits in mice. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 2949–54.Google ScholarPubMed
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hammers, M., Richardson, D. S., Burke, T. & Komdeur, J. (2012). Age-dependent terminal declines in reproductive output in a wild bird. PLoS ONE, 7(7), e40413.CrossRefGoogle Scholar
Hammers, M., Richardson, D. S., Burke, T. & Komdeur, J. (2013). The impact of reproductive investment and early-life environmental conditions on senescence: support for the disposable soma hypothesis. Journal of Evolutionary Biology, 26, 19992007.CrossRefGoogle ScholarPubMed
Holmes, D. J. & Austad, S. N. (1995a). Birds as animal-models for the comparative biology of aging: a prospectus. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 50, B5966.CrossRefGoogle ScholarPubMed
Holmes, D. J. & Austad, S. N. (1995b). The evolution of avian senescence patterns: implications for understanding primary aging processes. American Zoologist, 35, 307–17.CrossRefGoogle Scholar
Jones, O. R., Gaillard, J.-M., Tuljapurkar, S., et al. (2008). Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecology Letters, 11, 664–73.CrossRefGoogle ScholarPubMed
Kervinen, M., Lebigre, C., Alatalo, R. V., et al. (2015). Life-history differences in age-dependent expressions of multiple ornaments and behaviors in a lekking bird. American Naturalist, 185, 1327.CrossRefGoogle Scholar
Kim, S. Y., Velando, A., Torres, R. & Drummond, H. (2011). Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia, 166, 615–26.CrossRefGoogle Scholar
Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. (2012). Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evolutionary Ecology, 26, 1101–18.CrossRefGoogle Scholar
Kirkwood, T. B. L. & Rose, M. R. (1991). Evolution of senescence: late survival sacrificed for reproduction. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 332, 1524.Google ScholarPubMed
Kreft, I. G. G., de Leeuw, J. & Aiken, L. S. (1995). The effect of different forms of centering in hierarchical linear models. Multivariate Behavioural Research, 30, 121.CrossRefGoogle ScholarPubMed
Lack, D. (1943). The Life of the Robin (London: Witherby).Google Scholar
Limmer, B. & Becker, P. H. (2010). Improvement of reproductive performance with age and breeding experience depends on recruitment age in a long-lived seabird. Oikos, 119, 500–7.CrossRefGoogle Scholar
Lindstedt, S. L. & Calder, W. A. (1976). Body size and longevity in birds. Condor, 78, 91–4.CrossRefGoogle Scholar
Marzolin, G. A., Charmantier, A. & Gimenez, O. (2011). Frailty in state-space models: application to actuarial senescence in the dipper. Ecology, 92(3), 562–7.CrossRefGoogle ScholarPubMed
McCleery, R. H., Clobert, J., Julliard, R. & Perrins, C. M. (1996). Nest predation and delayed cost of reproduction in the great tit. Journal of Animal Ecology, 65, 96104.CrossRefGoogle Scholar
McCleery, R. H., Perrins, C. M., Sheldon, B. C. & Charmantier, A. (2008). Age-specific reproduction in a long-lived species: the combined effects of senescence and individual quality. Proceedings of the Royal Society of London Series B: Biological Sciences, 275, 963–70.Google Scholar
McDonald, D. B., Fitzpatrick, J. W. & Woolfenden, G. E. (1996). Actuarial senescence and demographic heterogeneity in the Florida scrub jay. Ecology, 77, 2373–81.CrossRefGoogle Scholar
McGlothlin, J. W., Jawor, J. M. & Ketterson, E. D. (2007). Natural variation in a testosterone-mediated trade-off between mating effort and parental effort. American Naturalist, 170, 864–75.CrossRefGoogle Scholar
Medawar, P. B. (1952). An Unsolved Problem in Biology (London: Lewis).Google Scholar
Metcalfe, N. B. & Monaghan, P. (2003). Growth versus lifespan: perspectives from evolutionary ecology. Experimental Gerontology, 38, 935–40.CrossRefGoogle ScholarPubMed
Millon, A., Petty, S. J., Little, B. & Lambin, X. (2011). Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. Journal of Animal Ecology, 80, 968–75.CrossRefGoogle Scholar
Mizutani, Y., Tomita, N., Niizuma, Y. & Yoda, K. (2013). Environmental perturbations influence telomere dynamics in long-lived birds in their natural habitat. Biology Letters, 9, 20130511.CrossRefGoogle ScholarPubMed
Moe, B., Rønning, B., Verhulst, S. & Bech, C. (2009). Metabolic ageing in individual zebra finches. Biology Letters, 5, 86–9.CrossRefGoogle ScholarPubMed
Møller, A. P. & de Lope, F. (1999). Senescence in a short-lived migratory bird: age-dependent morphology, migration, reproduction and parasitism. Journal of Animal Ecology, 68, 163–71.CrossRefGoogle Scholar
Monaghan, P. (2008). Early growth conditions, phenotypic development and environmental change. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 363, 1635–45.CrossRefGoogle ScholarPubMed
Monaghan, P., Charmantier, A., Nussey, D. H. & Ricklefs, R. E. (2008). The evolutionary ecology of senescence. Functional Ecology, 22, 371–8.CrossRefGoogle Scholar
Newton, I. & Rothery, P. (1998). Age-related trends in the breeding success of individual female sparrowhawks Accipiter nisus. Ardea, 86, 2131.Google Scholar
Nilsson, J. F., Tobler, M., Nilsson, J. A. & Sandell, M. I. (2011). Long-lasting consequences of elevated yolk testosterone for metabolism in the zebra finch. Physiological and Biochemical Zoology, 84, 287–91.CrossRefGoogle ScholarPubMed
Nussey, D. H., Froy, H., Lemaitre, J. F., et al. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Orell, M. & Belda, E. J. (2002). Delayed cost of reproduction and senescence in the willow tit Parus montanus. Journal of Animal Ecology, 71, 5564.CrossRefGoogle Scholar
Pardo, D., Barbraud, C. & Weimerskirch, H. (2013). Females better face senescence in the wandering albatross. Oecologia, 173, 1283–94.CrossRefGoogle ScholarPubMed
Partridge, L. & Barton, N.H. (1996). On measuring the rate of ageing. Proceedings of the Royal Society of London Series B: Biological Sciences, 263, 1365–71.Google Scholar
Péron, G., Crochet, P. A., Choquet, R., et al. (2010). Capture-recapture models with heterogeneity to study survival senescence in the wild. Oikos, 119, 524–32.CrossRefGoogle Scholar
Perrins, C. M. (1979). British Tits (London: Collins).Google Scholar
Potti, J., Canal, D. & Serrano, D. (2013). Lifetime fitness and age-related female ornament signalling: evidence for survival and fecundity selection in the pied flycatcher. Journal of Evolutionary Biology, 26, 1445–57.CrossRefGoogle ScholarPubMed
Preston, B. T., Saint Jalme, M., Hingrat, Y., et al. (2011). Sexually extravagant males age more rapidly. Ecology Letters, 14, 1017–24.CrossRefGoogle ScholarPubMed
Price, G. R. (1970). Selection and covariance. Nature, 227, 520.CrossRefGoogle ScholarPubMed
Rebke, M., Coulson, T., Becker, P. H. & Vaupel, J. W. (2010). Reproductive improvement and senescence in a long-lived bird. Proceedings of the National Academy of Sciences of the United States of America, 107, 7841–6.Google Scholar
Reed, T. E., Kruuk, L. E. B., Wanless, S., et al. (2008). Reproductive senescence in a long-lived seabird: rates of decline in late-life performance are associated with varying costs of early reproduction. American Naturalist, 171, E89101.CrossRefGoogle Scholar
Reid, J. M., Bignal, E. M., Bignal, S., et al. (2003). Age-specific reproductive performance in red-billed choughs Pyrrhocorax pyrrhocorax: patterns and processes in a natural population. Journal of Animal Ecology, 72, 765–76.CrossRefGoogle Scholar
Richdale, L. E. (1957). A Population Study of Penguins (Oxford: Clarendon Press).Google Scholar
Ruuskanen, S., Lehikoinen, E., Nikinmaa, M., et al. (2013). Long-lasting effects of yolk androgen on phenotype in the pied flycatcher (Ficedula hypoleuca). Behavioral Ecology and Sociobiology, 67, 361–72.CrossRefGoogle Scholar
Salomons, H. M., Mulder, G. A., van de Zande, L., et al. (2009). Telomere shortening and survival in free-living corvids. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 3157–65.Google ScholarPubMed
Schroeder, J., Burke, T., Mannarelli, M. E., et al. (2011). Maternal effects and heritability of annual productivity. Journal of Evolutionary Biology, 25, 149–56.Google ScholarPubMed
Schroeder, J., Nakagawa, S., Rees, M., et al. (2015). Reduced fitness in progeny from old parents in a natural population. Proceedings of the National Academy of Sciences of the United States of America, 112, 4021–5.Google Scholar
Torres, R., Drummond, H. & Velando, A. (2011). Parental age and lifespan influence offspring recruitment: a long-term study in a seabird. PLoS ONE, 6(11), e27245.CrossRefGoogle Scholar
Treidel, L. A., Whitley, B. N., Benowitz-Fredericks, Z. M. & Haussmann, M. F. (2013). Prenatal exposure to testosterone impairs oxidative damage repair efficiency in the domestic chicken (Gallus gallus). Biology Letters, 9, 20130684.CrossRefGoogle ScholarPubMed
van de Pol, M. & Verhulst, S. (2006). Age-dependent traits: a new statistical model to separate within- and between-individual effects. American Naturalist, 167, 766–73.CrossRefGoogle ScholarPubMed
van de Pol, M. & Wright, J. (2009). A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour, 77, 753–8.CrossRefGoogle Scholar
Vaupel, J. W., Manton, K. G. & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–54.CrossRefGoogle ScholarPubMed
Vaupel, J. W. & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population-dynamics. American Statistician, 39, 176–85.Google ScholarPubMed
Verhulst, S., Geerdink, M., Salomons, H. M. & Boonekamp, J. J. (2014). Social life histories: jackdaw dominance increases with age, terminally declines and shortens lifespan. Proceedings of the Royal Society of London Series B: Biological Sciences, 281, 20141045.Google ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Zhang, H., Rebke, M., Becker, P. H. & Bouwhuis, S. (2015a). Fitness prospects: effects of age, sex and recruitment age on reproductive value in a long-lived seabird. Journal of Animal Ecology, 84, 199207.CrossRefGoogle Scholar
Zhang, H., Vedder, O., Becker, P. H. & Bouwhuis, S. (2015b). Age-dependent trait variation: the relative contribution of within-individual change, selective appearance and disappearance in a long-lived seabird. Journal of Animal Ecology, 84(3), 797807.CrossRefGoogle Scholar
Zhang, H., Vedder, O., Becker, P.H. & Bouwhuis, S. (2015c). Contrasting between- and within-individual trait effects on mortality risk in a long-lived seabird. Ecology, 96, 71–9.CrossRefGoogle Scholar

References

Abrams, P. A. (1993). Does increased mortality favor the evolution of more rapid senescence? Evolution, 47(3), 877–87.CrossRefGoogle ScholarPubMed
Abrams, P. A. (2004). Mortality and lifespan. Nature, 431, 1048–9.CrossRefGoogle ScholarPubMed
Austad, S. N. (1993). Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). Journal of Zoology, 229(4), 695708.CrossRefGoogle Scholar
Austad, S. N. & Fischer, K. E. (1991). Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials Journal of Gerontology, 46(2), B4753.CrossRefGoogle ScholarPubMed
Bassar, R. D., López Sepulcre, A., Walsh, M. R., et al. (2010). Bridging the gap between ecology and evolution: integrating density regulation and life history evolution. Annals of the New York Academy of Sciences, 1206(1), 1734.CrossRefGoogle ScholarPubMed
Blanco, M. A. & Sherman, P. W. (2005). Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mechanisms of Ageing and Development, 126(6–7), 794803.CrossRefGoogle ScholarPubMed
Bouwhuis, S., Charmantier, A., Verhulst, S., et al. (2010) Individual variation in rates of senescence: natal origin effects and disposable soma in a wild bird population. Journal of Animal Ecology, 79(6), 1251–61.CrossRefGoogle Scholar
Bronikowski, A. & Vleck, D. (2010). Metabolism, body size and life span: a case study in evolutionarily divergent populations of the garter snake (Thamnophis elegans). Integrative and Comparative Biology, 50(5), 880–7.CrossRefGoogle ScholarPubMed
Bronikowski, A. M. & Arnold, S. J. (1999). The evolutionary ecology of life history variation in the garter snake Thamnophis elegans. Ecology, 80(7), 2314–25.CrossRefGoogle Scholar
Bronikowski, A. M. & Promislow, D. E. L. (2005). Testing evolutionary theories of aging in wild populations. Trends in Ecology and Evolution, 20(6), 271–3.CrossRefGoogle ScholarPubMed
Bumpus, H. C. (1899). The elimination of the unfit as illustrated by the introduced sparrow, Passer domesticus. Biological Lectures, Woods Hole Marine Biological Station, 6, 209–26.Google Scholar
Caswell, H. (2007). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22(4), 173–4.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1980). Evolution in Age-Structured Populations (Cambridge University Press).Google Scholar
Charlesworth, B. & Hughes, K. A. (1996). Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proceedings of the National Academy of Sciences of the United States of America, 93(12), 6140–5.Google Scholar
Charmantier, A., Brommer, J. E. & Nussey, D. H. (2014). The quantitative genetics of senescence in wild animals. In Quantitative Genetics in the Wild, ed. Charmantier, A., Garant, D. & Kruuk, L. E. B. (pp. 6883 ) (Oxford University Press).CrossRefGoogle Scholar
Chen, H. & Maklakov, A. (2012). Longer life span evolves under high rates of condition-dependent mortality. Current Biology, 22, 2140–3.CrossRefGoogle ScholarPubMed
Cote, S. D. & Festa-Bianchet, M. (2001). Birthdate, mass and survival in mountain goat kids: effects of maternal characteristics and forage quality. Oecologia, 127(2), 230–8.CrossRefGoogle ScholarPubMed
Crisler, L. (1956). Observations of wolves hunting caribou. Journal of Mammalogy, 37, 337–46.CrossRefGoogle Scholar
Curio, E. (1976). Ethology of Predation (Berlin: Springer-Verlag).CrossRefGoogle Scholar
Descamps, S., Boutin, S., Berteaux, D., et al. (2006). Best squirrels trade a long life for an early reproduction. Proceedings of the Royal Society of London Series B: Biological Sciences, 273, 2369–74.Google ScholarPubMed
Ding, L., Kuhne, W. W., Hinton, D. E., et al. (2010). Quantifiable biomarkers of normal aging in the Japanese medaka fish (Oryzias latipes). PLoS ONE, 5(10), 111.CrossRefGoogle ScholarPubMed
Dowling, D. K. (2012). Aging: evolution of life span revisited. Current Biology, 22(22), R947–9.CrossRefGoogle ScholarPubMed
Dudycha, J. L. & Tessier, A. J. (1999). Natural genetic variation of life span, reproduction, and juvenile growth in Daphnia. Evolution, 53(6), 1744–56.CrossRefGoogle ScholarPubMed
Endler, J. A. (1978). A predator’s view of animal color patterns. In Evolutionary Biology, ed. Hecht, M. K., Steere, W. C. & Wallace, B. (pp. 319–64 ) (New York: Plenum Press).Google Scholar
Endler, J. A. (1986). Natural Selection in the Wild (Princetion, NJ: Princeton University Press).Google Scholar
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Gadgil, M. & Bossert, W. H. (1970). Life historical consequences of natural selection. American Naturalist, 104(935), 124.CrossRefGoogle Scholar
Gese, E. M. & Grothe, S. (1995). Analysis of coyote predation on deer and elk during winter in Yellowstone National park, Wyoming. American Midland Naturalist, 133, 3643.CrossRefGoogle Scholar
Ghalambor, C. K., Reznick, D. N. & Walker, J. A. (2004). Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). American Naturalist, 164(1), 3850.CrossRefGoogle ScholarPubMed
Gray, D. A. & Cade, W. H. (2000). Senescence in field crickets (Orthoptera; Gryllidae): examining the effects of sex and a sex-biased parasitoid. Canadian Journal of Zoology, 78(1), 140–3.CrossRefGoogle Scholar
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12(1), 1245.CrossRefGoogle ScholarPubMed
Hayward, A. D., Wilson, A. J., Pilkington, J. G., et al. (2013). Reproductive senescence in female Soay sheep: variation across traits and contributions of individual ageing and selective disappearance. Functional Ecology, 27, 184–95.CrossRefGoogle Scholar
Holmes, D. J. & Austad, S. N. (1995) The evolution of avian senescence patterns: implications for understanding primary aging processes. American Zoologist, 35(4), 307–17.CrossRefGoogle Scholar
Irschick, D. J., Bailey, J. K., Schweitzer, J., et al. (2007). New directions for studying selection in nature: studies of performance and communities. Physiological and Biochemical Zoology, 80, 567–77.CrossRefGoogle ScholarPubMed
Janzen, F. J., Tucker, J. K. & Paukstis, G. L. (2007). Experimental analysis of an early life-history stage: direct or indirect selection on body size of hatchling turtles? Functional Ecology, 21, 162–70.CrossRefGoogle Scholar
Kawasaki, N., Brassil, C., Brooks, R., et al. (2008). Environmental effects on the expression of life span and aging: an extreme contrast between wild and captive cohorts of Telostylinus angusticollis (Diptera: Neriidae). American Naturalist, 172(3), 346–57.CrossRefGoogle ScholarPubMed
Keller, L. & Genoud, M. (1997). Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature, 389(6654), 958–60.CrossRefGoogle Scholar
Kimber, C. M. & Chippindale, A. K. (2013). Mutation, condition, and the maintenance of extended lifespan in Drosophila. Current Biology, 23, 2283–7.CrossRefGoogle ScholarPubMed
Korslund, L. & Steen, H. (2006) Small rodent winter survival: snow conditions limit access to food resources. Journal of Animal Ecology, 75(1), 156–66.CrossRefGoogle ScholarPubMed
Krumm, C. E., Conner, M. M., Hobbs, N. T., et al. (2010). Mountain lions prey selectively on prion-infected mule deer. Biology Letters, 6, 209–11.CrossRefGoogle ScholarPubMed
Law, R. (1979). Optimal life histories under age-specific predation. American Naturalist, 114(3), 399417.CrossRefGoogle Scholar
Lingle, S. & Wilson, W. F. (2001). Detection and avoidance of predators in white-talied deer (Odocoileus virgianianus) and mule deer (O. hemionus). Ethology, 107, 125–47.CrossRefGoogle Scholar
Luckinbill, L. S., Arking, R., Clare, M.J., et al. (1984). Selection for delayed senescence in Drosophila melanogaster. Evolution, 38(5), 9961003.CrossRefGoogle ScholarPubMed
Luckinbill, L. S. & Clare, M. J. (1985). Selection for life span in Drosophila melanogaster. Heredity, 55(1), 918.CrossRefGoogle ScholarPubMed
Mattingly, H. T. & Butler, M. J. IV (1994). Laboratory predation on the Trinidadian guppy: implications for the size-selective predation hypothesis and guppy life history evolution. Oikos, 69(1), 5464.CrossRefGoogle Scholar
Mech, L. D. (1970). The Wolf: Ecology and Behavior of an Endangered Species (Garden City, NJ: American Museum of Natural History Press).Google Scholar
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Michod, R. E. (1979). Evolution of life histories in response to age-specific mortality factors. American Naturalist, 113(4), 531–50.CrossRefGoogle Scholar
Miller, R. A., Harper, J. M., Dysko, R. C., et al. (2002). Longer life spans and delayed maturation in wild-derived mice. Experimental Biology and Medicine, 227(7), 500–8.CrossRefGoogle ScholarPubMed
Moorad, J. A. & Promislow, D. E. L. (2009). What can genetic variation tell us about the evolution of senescence? Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 2271–8.Google ScholarPubMed
Morbey, Y. E., Brassil, C. E. & Hendry, A. P. (2005). Rapid senescence in pacific salmon. American Naturalist, 166(5), 556–68.CrossRefGoogle ScholarPubMed
Mueller, L. D. (1987). Evolution of accelerated senescence in laboratory populations of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 84(7), 1974–7.Google ScholarPubMed
Nussey, D. H., Coulson, T., Festa-Bianchet, M., et al. (2008). Measuring senescence in wild animal populations: towards a longitudinal approach. Functional Ecology, 22, 393406.CrossRefGoogle Scholar
Nussey, D. H., Froy, H., Lemaître, J.-F., et al. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Palacios, M. G., Cunnick, J. E., Winkler, D. W., et al. (2007). Immunosenescence in some but not all immune components in a free-living vertebrate, the tree swallow. Proceedings of the Royal Society of London Series B: Biological Sciences, 274, 951–7.Google ScholarPubMed
Partridge, L. & Barton, N. H. (1993). Optimality, mutation and the evolution of aging. Nature, 362(6418), 305–11.CrossRefGoogle Scholar
Partridge, L. & Gems, D. (2002). Mechanisms of ageing: public or private? Nature Reviews Genetics, 3(3), 165–75.CrossRefGoogle ScholarPubMed
Pletcher, S. D., Khazaeli, A. A. & Curtsinger, J. W. (2000). Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 55(8), B381–9.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. (1991). Senescence in natural populations of mammals: a comparative study. Evolution, 45(8), 1869–87.CrossRefGoogle ScholarPubMed
Reed, T. E., Kruuk, L. E. B., Wanless, S., et al. (2008). Reproductive senescence in a long-lived seabird: rates of decline in late-life performance are associated with varying costs of early reproduction. American Naturalist, 171(2), E89101.CrossRefGoogle Scholar
Reznick, D. (1993). New model systems for studying the evolutionary biology of aging: crustacea. Genetica, 91(1), 7988.CrossRefGoogle ScholarPubMed
Reznick, D. & Bryant, M. (2007). Comparative long-term mark-recapture studies of guppies (Poecilia reticulata): differences among high and low predation localities in growth and survival. Annales Zoologici Fennici, 44, 152–60.Google Scholar
Reznick, D., Bryant, M. J. & Bashey, F. (2002). r-and K-selection revisited: the role of population regulation in life-history evolution. Ecology, 83(6), 1509–20.CrossRefGoogle Scholar
Reznick, D., Bryga, H. & Endler, J. A. (1990). Experimentally induced life-history evolution in a natural population. Nature, 346, 357–9.CrossRefGoogle Scholar
Reznick, D. & Endler, J. A. (1982). The impact of predation on life-history evolution in Trinidadian guppies (Poecilia reticulata). Evolution, 36(1), 160–77.Google ScholarPubMed
Reznick, D. N., Bryant, M. J., Roff, D., et al. (2004). Effect of extrinsic mortality on the evolution of senescence in guppies. Nature, 431(7012), 1095–9.CrossRefGoogle ScholarPubMed
Reznick, D. N., Butler, M. J., Rodd, F. H., et al. (1996). Life-history evolution in guppies (Poecilia reticulata): 6. Differential mortality as a mechanism for natural selection. Evolution, 50(4), 1651–60.Google ScholarPubMed
Ricklefs, R. E. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. American Naturalist, 152(1), 2444.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. & Scheuerlein, A. (2002). Biological implications of the Weibull and Gompertz models of aging. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57(2), B6976.CrossRefGoogle ScholarPubMed
Robert, K. A. & Bronikowski, A. M. (2010). Evolution of senescence in nature: physiological evolution in populations of garter snake with divergent life histories. American Naturalist, 175(2), 147–59.CrossRefGoogle ScholarPubMed
Rodel, H. G., Bora, A., Kaetzke, P., et al. (2004). Over-winter survival in subadult European rabbits: weather effects, density dependence, and the impact of individual characteristics. Oecologia, 140(4), 566–76.CrossRefGoogle ScholarPubMed
Rose, M. R. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38(5), 1004–10.CrossRefGoogle ScholarPubMed
Rose, M. R. (1991). Evolutionary Biology of Aging (New York: Oxford University Press).Google Scholar
Rose, M. R., Rauser, C. L., Benford, G., et al. (2007). Hamilton’s forces of natural selection after forty years. Evolution, 61(6), 1265–76.CrossRefGoogle ScholarPubMed
Schaffer, W. M. (1974). Optimal reproductive effort in fluctuating environments. American Naturalist, 108(964), 783–90.CrossRefGoogle Scholar
Schaller, G. B. (1972). The Serengeti Lion: A Study in Predator-Prey Relations (University of Chicago Press).Google Scholar
Sherman, P. W. & Jarvis, J. U. M. (2002). Extraordinary life spans of naked mole-rats (Heterocephalus glaber). Journal of Zoology, 258(3), 307–11.CrossRefGoogle Scholar
Slobodkin, L. B. (1968). How to be a predator. American Zoologist, 8(1), 4351.CrossRefGoogle Scholar
Snoke, M. S. & Promislow, D. E. L. (2003). Quantitative genetic tests of recent senescence theory: age-specific mortality and male fertility in Drosophila melanogaster. Heredity, 91(6), 546–56.CrossRefGoogle ScholarPubMed
Sparkman, A. M., Arnold, S. J. and Bronikowski, A. M. (2007). An empirical test of evolutionary theories for reproductive senescence and reproductive effort in the garter snake Thamnophis elegans. Proceedings of the Royal Society of London Series B: Biological Sciences, 274(1612), 943–50.Google ScholarPubMed
Sparkman, A. M., Bronikowski, A. M., Billings, J. G., et al. (2013). Avian predation and the evolution of life histories in the garter snake Thamnophis elegans. American Midland Naturalist, 170(1), 6685.CrossRefGoogle Scholar
Stearns, S. C., Ackermann, M., Doebeli, M., et al. (2000). Experimental evolution of aging, growth, and reproduction in fruitflies. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3309–13.Google ScholarPubMed
Strauss, R. E. (1999). Brain-tissue accumulation of fluorescent age pigments in four Poeciliid fishes (Cyprinodontiformes) and the estimation of ‘biological age’. Growth Development and Aging, 63(4), 151–70.Google ScholarPubMed
Strobbe, F., McPeek, M. A., De Block, M., et al. (2010). Survival selection imposed by predation on a physiological trait underlying escape speed. Functional Ecology, 24, 1306–12.CrossRefGoogle Scholar
Tatar, M., Gray, D. W. & Carey, J. R. (1997). Altitudinal variation for senescence in Melanoplus grasshoppers. Oecologia, 111(3), 357–64.CrossRefGoogle ScholarPubMed
Taylor, H. M., Gourley, R. S., Lawrence, C. E., et al. (1974). Natural-selection of life-history attributes: analytical approach. Theoretical Population Biology, 5(1), 104–22.CrossRefGoogle ScholarPubMed
Temple, S. A. (1987). Do predators always capture substandard individuals disproportionately from prey populations? Ecology, 68(3), 669–74.CrossRefGoogle Scholar
Terzibasi, E., Valenzano, D. R., Benedetti, M., et al. (2008). Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS ONE, 3(12), 113.CrossRefGoogle ScholarPubMed
Tozzini, E. T., Dorn, A., Ng’oma, E., et al. (2013). Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evolutionary Biology, 13(77), 112.Google ScholarPubMed
Unsworth, J. W., Pac, D. F., White, G. C., et al. (1999). Mule deer survival in Colorado, Idaho, and Montana. Journal of Wildlife Management, 63(1), 315–26.CrossRefGoogle Scholar
Walsh, M. R. (2013). The evolutionary consequences of indirect effects. Trends in Ecology and Evolution, 28(1), 23–9.CrossRefGoogle ScholarPubMed
Walsh, M. R., Whittington, D. & Walsh, M. J. (2014) Does variation in the intensity and duration of predation drive evolutionary changes in senescence? Journal of Animal Ecology, 83, 1279–88.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11(4), 398411.CrossRefGoogle Scholar
Williams, P. D. & Day, T. (2003). Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution, 57(7), 1478–88.Google ScholarPubMed
Williams, P. D., Day, T., Fletcher, Q., et al. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21(8), 458–63.CrossRefGoogle ScholarPubMed
Wilson, A. J., Charmantier, A. & Hadfield, J. D. (2008). Evolutionary genetics of ageing in the wild: empirical patterns and future perspectives. Functional Ecology, 22, 431–42.CrossRefGoogle Scholar
Wilson, A. J., Nussey, D. H., Pemberton, J. M., et al. (2007). Evidence for a genetic basis of aging in two wild vertebrate populations. Current Biology, 17, 2136–42.CrossRefGoogle ScholarPubMed

References

Aamodt, R. M. (2009). Age-and caste-dependent decrease in expression of genes maintaining DNA and RNA quality and mitochondrial integrity in the honeybee wing muscle. Experimental Gerontology, 44(9), 586–93.CrossRefGoogle ScholarPubMed
Amdam, G. & Page, R. (2005). Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect. Ageing Research Reviews, 4(3), 398408.CrossRefGoogle Scholar
Amdam, G. V., Aase, A. L. T. O., Seehuus, S. C., et al. (2005). Social reversal of immunosenescence in honey bee workers. Experimental Gerontology, 40(12), 939–47.CrossRefGoogle ScholarPubMed
Amdam, G. V., Norberg, K., Hagen, A., & Omholt, S. W. (2003a). Social exploitation of vitellogenin. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 17991802.CrossRefGoogle ScholarPubMed
Amdam, G. V. & Omholt, S. W. (2002). The regulatory anatomy of honeybee lifespan. Journal of Theoretical Biology, 216, 209–28.CrossRefGoogle ScholarPubMed
Amdam, G. V. & Omholt, S. W. (2003). The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. Journal of Theoretical Biology, 223(4), 451–64.CrossRefGoogle ScholarPubMed
Amdam, G. V., Rueppell, O., Fondrk, M. K., et al. (2009). The nurse’s load: early-life exposure to brood-rearing affects behavior and lifespan in honey bees (Apis mellifera). Experimental Gerontology, 44(6), 467–71.CrossRefGoogle ScholarPubMed
Amdam, G. V., Simões, Z. L. P., Hagen, A., et al. (2004). Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Experimental Gerontology, 39(5), 767–73.CrossRefGoogle ScholarPubMed
Amdam, G. V., Simões, Z. L. P., Guidugli, K. R., et al. (2003b). Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC biotechnology, 3(1), 1.CrossRefGoogle ScholarPubMed
Baker, N., Wolschin, F. & Amdam, G. V. (2012). Age-related learning deficits can be reversible in honeybees Apis mellifera. Experimental Gerontology, 47(10), 764–72.CrossRefGoogle ScholarPubMed
Baudisch, A. & Vaupel, J. W. (2010). Senescence vs sustenance: evolutionary-demographic models of aging. Demographic Research, 23(23), 655–68.CrossRefGoogle Scholar
Behrends, A. & Scheiner, R. (2010). Learning at old age: a study on winter bees. Frontiers in Behavioral Neuroscience, 4, article 15.Google Scholar
Behrends, A., Scheiner, R., Baker, N. & Amdam, G. V. (2007). Cognitive aging is linked to social role in honey bees (Apis mellifera). Experimental Gerontology, 42(12), 1146–53.CrossRefGoogle ScholarPubMed
Bell, W. J. (1973). Factors controlling initiation of vitellogenesis in a primitively social bee, Lasioglossum zephyrum (Hymenoptera: Halictidae). Insectes Sociaux, 20(3), 253–60.CrossRefGoogle Scholar
Beye, M., Hasselmann, M., Fondrk, M. K., et al. (2003). The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell, 114(4), 419–29.CrossRefGoogle ScholarPubMed
Blagosklonny, M. V. (2007). Paradoxes of aging. Cell Cycle, 6(24), 29973003.CrossRefGoogle ScholarPubMed
Bownes, M., Lineruth, K. & Mauchline, D. (1991). Egg production and fertility in Drosophila depend upon the number of yolk-protein gene copies. Molecular and General Genetics, 228(1–2), 324–7.CrossRefGoogle ScholarPubMed
Byrne, B. M., Gruber, M. & Ab, G. (1989). The evolution of egg yolk proteins. Progress in Biophysics and Molecular Biology, 53(1), 3369.CrossRefGoogle ScholarPubMed
Carey, J. R. (2001). Demographic mechanisms for the evolution of long life in social insects. Experimental Gerontology, 36, 713–22.CrossRefGoogle ScholarPubMed
Chapuisat, M. & Keller, L. (2002). Division of labour influences the rate of ageing in weaver ant workers. Proceedings of the Royal Society of London Series B: Biological Sciences, 269(1494), 909–13.CrossRefGoogle ScholarPubMed
Corona, M., Hughes, K. A., Weaver, D. B., & Robinson, G. E. (2005). Gene expression patterns associated with queen honey bee longevity. Mechanisms of Ageing and Development, 126(11), 1230–8.CrossRefGoogle ScholarPubMed
Corona, M., Velarde, R. A., Remolina, S., et al. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proceedings of the National Academy of Sciences of the United States of America, 104(17), 7128–33.Google ScholarPubMed
Dietzl, G., Chen, D., Schnorrer, F., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in drosophila. Nature, 448(7150), 151–6.CrossRefGoogle ScholarPubMed
Doonan, R., McElwee, J. J., Matthijssens, F., et al. (2008). Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes & Development, 22(23), 3236–41.CrossRefGoogle ScholarPubMed
Doums, C., Moret, Y., Benelli, E. & Schmid-Hempel, P. (2002). Senescence of immune defence in Bombus workers. Ecological Entomology, 27(2), 138–44.CrossRefGoogle Scholar
Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis, 34, 115.CrossRefGoogle ScholarPubMed
Dukas, R. (2008). Mortality rates of honey bees in the wild. Insectes Sociaux, 55(3), 252–5.CrossRefGoogle Scholar
Ferreira, P. G., Patalano, S., Chauhan, R., et al. (2013). Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biology, 14(2), R20.CrossRefGoogle ScholarPubMed
Finkel, T. & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–47.CrossRefGoogle ScholarPubMed
Flatt, T. (2011). Survival costs of reproduction in Drosophila. Experimental Gerontology, 46(5), 369–75.CrossRefGoogle ScholarPubMed
Gapper, C. & Dolan, L. (2006). Control of plant development by reactive oxygen species. Plant Physiology, 141(2), 341–5.CrossRefGoogle ScholarPubMed
Gems, D. & Doonan, R. (2009). Antioxidant defense and aging in C. elegans. Cell Cycle, 8(11), 1681–7.CrossRefGoogle ScholarPubMed
Gems, D. & Partridge, L. (2013). Genetics of longevity in model organisms: debates and paradigm shifts. Annual Review of Physiology, 75, 621–44.CrossRefGoogle ScholarPubMed
Gordon, D. M. & Kulig, A. (1998). The effect of neighbours on the mortality of harvester ant colonies. Journal of Animal Ecology, 67(1), 141–8.CrossRefGoogle Scholar
Gräff, J., Jemielity, S., Parker, J. D., et al. (2007). Differential gene expression between adult queens and workers in the ant Lasius niger. Molecular Ecology, 16(3), 675–83.CrossRefGoogle ScholarPubMed
Grotewiel, M. S., Martin, I., Bhandari, P. & Cook-Wiens, E. (2005). Functional senescence in Drosophila melanogaster. Ageing Research Reviews, 4(3), 372–97.CrossRefGoogle ScholarPubMed
Grozinger, C. M., Fan, Y., Hoover, S. E. R. & Winston, M. L. (2007). Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Molecular Ecology, 16(22), 4837–48.CrossRefGoogle ScholarPubMed
Guidugli, K. R., Nascimento, A. M., Amdam, G. V., et al. (2005). Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Letters, 579(22), 4961–5.CrossRefGoogle ScholarPubMed
Haddad, L. S., Kelbert, L. & Hulbert, A. J. (2007). Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Experimental Gerontology, 42(7), 601–9.CrossRefGoogle ScholarPubMed
Hall, D. W. & Goodisman, M. A. D. (2012). The effects of kin selection on rates of molecular evolution in social insects. Evolution, 66(7), 2080–93.CrossRefGoogle ScholarPubMed
Hall, D. W., Soojin, V. Y. & Goodisman, M. A. D. (2013). Kin selection, genomics and caste-antagonistic pleiotropy. Biology Letters, 9(6), 20130309.CrossRefGoogle ScholarPubMed
Hamanaka, R. B. & Chandel, N. S. (2010). Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in Biochemical Sciences, 35(9), 505–13.CrossRefGoogle ScholarPubMed
Hamilton, B., Dong, Y., Shindo, M., et al. (2005). A systematic RNAi screen for longevity genes in C. elegans. Genes & Development, 19(13), 1544–55.CrossRefGoogle ScholarPubMed
Harman, D. (1992). Free-radical theory of aging. Mutation Research/DNAging, 275(3–6), 257–66.CrossRefGoogle ScholarPubMed
Hartmann, A. & Heinze, J. (2003). Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution, 57(10), 2424–9.Google Scholar
Heinze, J. & Schrempf, A. (2012). Terminal investment: individual reproduction of ant queens increases with age. PloS One, 7(4), e35201.CrossRefGoogle ScholarPubMed
Hölldobler, B. & Wilson, E. O. (1990). The Ants (Berlin: Springer-Verlag).CrossRefGoogle Scholar
Hsieh, Y. & Hsu, C. (2013). Oxidative stress and anti-oxidant enzyme activities in the trophocytes and fat cells of queen honeybees (Apis mellifera). Rejuvenation Research, 16(4), 295303.CrossRefGoogle ScholarPubMed
Hsu, C. & Hsieh, Y. (2014). Oxidative stress decreases in the trophocytes and fat cells of worker honeybees during aging. Biogerontology, 15, 129–37.CrossRefGoogle ScholarPubMed
Hystad, E. M., Amdam, G. V. & Eide, L. (2014). Mitochondrial DNA integrity changes with age but does not correlate with learning performance in honey bees. Experimental Gerontology, 49, 1218.CrossRefGoogle Scholar
Ihle, K. E., Fondrk, M. K., Page, R. E. & Amdam, G. V. (2015). Genotype effect on lifespan following vitellogenin knockdown. Experimental Gerontology, 61, 113–22.CrossRefGoogle ScholarPubMed
Ingram, K. K., Pilko, A., Heer, J. & Gordon, D. M. (2013). Colony life history and lifetime reproductive success of red harvester ant colonies. Journal of Animal Ecology, 82(3), 540–50.CrossRefGoogle ScholarPubMed
Jemielity, S., Chapuisat, M., Parker, J. D. & Keller, L. (2005). Long live the queen: studying aging in social insects. Age, 27(3), 241–8.CrossRefGoogle ScholarPubMed
Jemielity, S., Kimura, M., Parker, K. M., et al. (2007). Short telomeres in short-lived males: what are the molecular and evolutionary causes? Aging Cell, 6(2), 225–33.CrossRefGoogle ScholarPubMed
Jin, W., Riley, R. M., Wolfinger, R. D., et al. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics, 29(4), 389–95.CrossRefGoogle ScholarPubMed
Judice, C. C., Carazzole, M. F., Festa, F., et al. (2006). Gene expression profiles underlying alternative caste phenotypes in a highly eusocial bee, Melipona quadrifasciata. Insect Molecular Biology, 15(1), 3344.CrossRefGoogle Scholar
Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature, 473(7348), 478–83.CrossRefGoogle ScholarPubMed
Keller, L. & Genoud, M. (1997). Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature, 389(6654), 958–60.CrossRefGoogle Scholar
Kenyon, C. (2001). A conserved regulatory system for aging. Cell, 105(2), 165–8.CrossRefGoogle ScholarPubMed
Kim, S. N., Rhee, J., Song, Y., et al. (2005). Age-dependent changes of gene expression in the Drosophila head. Neurobiology of Aging, 26(7), 1083–91.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270(5635), 301–4.CrossRefGoogle Scholar
Kirkwood, T. B. L. & Holliday, R. (1979). Evolution of ageing and longevity. Proceedings of the Royal Society of London Series B: Biological Sciences, 205(1161), 531–46.Google ScholarPubMed
Kramer, B. H. & Schaible, R. (2013). Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera. Biological Journal of the Linnean Society, 109(3), 710–24.CrossRefGoogle Scholar
Kuszewska, K. & Woyciechowski, M. (2013). Reversion in honeybee, Apis mellifera, workers with different life expectancies. Animal Behaviour, 85(1), 247–53.CrossRefGoogle Scholar
Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. (1999). Gene expression profile of aging and its retardation by caloric restriction. Science, 285(5432), 1390–3.CrossRefGoogle ScholarPubMed
Lee, R. (2003). Rethinking the evolutionary theory of aging: transfers, not births, shape social species. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9637–42.Google Scholar
Li-Byarlay, H., Li, Y., Stroud, H., et al. (2013). RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12750–5.Google ScholarPubMed
Libbrecht, R., Corona, M., Wende, F., et al. (2013). Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 11050–5.Google ScholarPubMed
Mair, W. & Dillin, A. (2008). Aging and survival: the genetics of life span extension by dietary restriction. Annual Review of Biochemistry, 77, 727–54.CrossRefGoogle ScholarPubMed
Mali, P., Esvelt, K. M. & Church, G. M. (2013). Cas9 as a versatile tool for engineering biology. Nature Methods, 10(10), 957–63.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology: An Inaugural Lecture Delivered at University College, London, 6 December, 1951 (London: Lewis).Google Scholar
Mersch, D. P., Crespi, A. & Keller, L. (2013). Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science, 340(6136), 1090–3.CrossRefGoogle ScholarPubMed
Miyazaki, S., Okada, Y., Miyakawa, H., et al. (2014). Sexually dimorphic body color is regulated by sex-specific expression of yellow gene in ponerine ant, Diacamma sp. PLoS ONE, 9(3), e92875.CrossRefGoogle ScholarPubMed
Moret, Y. & Schmid-Hempel, P. (2009). Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos, 118(3), 371–8.CrossRefGoogle Scholar
Münch, D. (2013). Brain aging and performance plasticity in honeybees. In Invertebrate Learning and Memory, ed. Menzel, R. & Benjamin, P. (pp. 487500). (New York: Academic Press).CrossRefGoogle Scholar
Münch, D. & Amdam, G. V. (2010). The curious case of aging plasticity in honey bees. FEBS Letters, 584(12), 24962503.CrossRefGoogle ScholarPubMed
Münch, D., Amdam, G. V. & Wolschin, F. (2008). Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee. Functional Ecology, 22(3), 407–21.CrossRefGoogle Scholar
Münch, D., Baker, N., Kreibich, C. D., et al. (2010). In the laboratory and during free-flight: old honey bees reveal learning and extinction deficits that mirror mammalian functional decline. PloS ONE, 5(10), e13504.CrossRefGoogle ScholarPubMed
Münch, D., Kreibich, C. D. & Amdam, G. V. (2013). Aging and its modulation in a long-lived worker caste of the honey bee. Journal of Experimental Biology, 216(9), 1638–49.CrossRefGoogle Scholar
Murphy, C. T., McCarroll, S. A., Bargmann, C. I., et al. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424(6946), 277–83.CrossRefGoogle ScholarPubMed
Nakamura, A., Yasuda, K., Adachi, H., et al. (1999). Vitellogenin-6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 264(2), 580–3.CrossRefGoogle Scholar
Nelson, C. M., Ihle, K. E., Fondrk, M. K., et al. (2007). The gene vitellogenin has multiple coordinating effects on social organization. PLoS BIOLOGY, 5(3), 673–7.CrossRefGoogle ScholarPubMed
Ometto, L., Shoemaker, D., Ross, K. G. & Keller, L. (2011). Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Molecular Biology and Evolution, 28(4), 1381–92.CrossRefGoogle ScholarPubMed
Page, R. E. & Peng, C. Y. S. (2001). Aging and development in social insects with emphasis on the honey bee, Apis mellifera l. Experimental Gerontology, 36, 695711.CrossRefGoogle ScholarPubMed
Parker, J. D. (2010). What are social insects telling us about aging? Myrmecological News, 13, 103–10.Google Scholar
Parker, J. D., Parker, K. M., Sohal, B. H., et al. (2004). Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3486–9.Google ScholarPubMed
Partridge, L. & Barton, N. (1993). Optimality, mutation and the evolution of aging. Nature, 362(6418), 305–11.CrossRefGoogle Scholar
Partridge, L. & Gems, D. (2002). Mechanisms of aging: public or private? Nature Reviews Genetics, 3(3), 165–75.CrossRefGoogle ScholarPubMed
Partridge, L., Gems, D. & Withers, D. J. (2005). Sex and death: what is the connection? Cell, 120(4), 461–72.CrossRefGoogle ScholarPubMed
Pérez, V. I., Bokov, A., Van Remmen, H., et al. (2009). Is the oxidative stress theory of aging dead? Biochimica et Biophysica Acta (BBA): General Subjects, 1790(10), 1005–14.Google ScholarPubMed
Pinto, L. Z., Bitondi, M. M. G. & Simoes, Z. L. P. (2000). Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyriproxyfen. Journal of Insect Physiology, 46(2), 153–60.CrossRefGoogle ScholarPubMed
Postlethwait, J. H. & Shirk, P. D. (1981). Genetic and endocrine regulation of vitellogenesis in Drosophila. American Zoologist, 21(3), 687700.CrossRefGoogle Scholar
Postlethwait, J. H. & Weiser, K. (1973). Vitellogenesis induced by juvenile hormone in the female sterile mutant apterous-four in Drosophila melanogaster. Nature, 244(139), 284–5.Google ScholarPubMed
Remolina, S. C., Hafez, D. M., Robinson, G. E. & Hughes, K. A. (2007). Senescence in the worker honey bee Apis mellifera. Journal of Insect Physiology, 53(10), 1027–33.CrossRefGoogle ScholarPubMed
Remolina, S. C. & Hughes, K. A. (2008). Evolution and mechanisms of long life and high fertility in queen honey bees. Age, 30(2–3), 177–85.CrossRefGoogle ScholarPubMed
Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology, 37(1), 637–65.CrossRefGoogle ScholarPubMed
Röseler, P. (1977). Juvenile hormone control of oögenesis in bumblebee workers, Bombus terrestris. Journal of Insect Physiology, 23(8), 985–92.CrossRefGoogle Scholar
Rueppell, O. (2009). Aging of social insects. In Organization of Insect Societies: From Genome to Sociocomplexity, ed. Gadau, J. & Fewell, J. (pp. 5173) (Cambridge, MA: Harvard University Press).Google Scholar
Rueppell, O., Bachelier, C., Fondrk, M. K. & Jr Page, R. E. (2007a). Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Experimental Gerontology, 42(10), 1020–32.CrossRefGoogle ScholarPubMed
Rueppell, O., Christine, S., Mulcrone, C. & Groves, L. (2007b). Aging without functional senescence in honey bee workers. Current Biology, 17(8), R274–5.CrossRefGoogle ScholarPubMed
Rueppell, O., Königseder, F., Heinze, J. & Schrempf, A. (2015). Intrinsic survival advantage of social insect queens depends on reproductive activation. Journal of Evolutionary Biology, 28(12), 2349–54.CrossRefGoogle ScholarPubMed
Rueppell, O., Linford, R., Gardner, P., et al. (2008). Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera l). Behavioral Ecology and Sociobiology, 62(10), 1621–31.CrossRefGoogle ScholarPubMed
Scheiner, R. & Amdam, G. V. (2009). Impaired tactile learning is related to social role in honeybees. Journal of Experimental Biology, 212(7), 9941002.CrossRefGoogle ScholarPubMed
Schmid, M. R., Brockmann, A., Pirk, C. W. W., et al. (2008). Adult honeybees (Apis mellifera l.) abandon hemocytic, but not phenoloxidase-based immunity. Journal of Insect Physiology, 54(2), 439–44.CrossRefGoogle Scholar
Schneider, S. A., Schrader, C., Wagner, A. E., et al. (2011). Stress resistance and longevity are not directly linked to levels of enzymatic antioxidants in the ponerine ant Harpegnathos saltator. PLoS ONE, 6(1), e14601.CrossRefGoogle Scholar
Schrempf, A., Cremer, S. & Heinze, J. (2011). Social influence on age and reproduction: reduced lifespan and fecundity in multi-queen ant colonies. Journal of Evolutionary Biology, 24, 1455–61.CrossRefGoogle ScholarPubMed
Schwander, T., Lo, N., Beekman, M., et al. (2010). Nature versus nurture in social insect caste differentiation. Trends in Ecology and Evolution, 25(5), 275–82.CrossRefGoogle ScholarPubMed
Seehuus, S., Krekling, T. & Amdam, G. V. (2006a). Cellular senescence in honey bee brain is largely independent of chronological age. Experimental Gerontology, 41(11), 1117–25.CrossRefGoogle ScholarPubMed
Seehuus, S., Norberg, K., Gimsa, U., et al. (2006b). Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 962–7.Google ScholarPubMed
Seehuus, S., Taylor, S., Petersen, K. & Aamodt, R. M. (2013). Somatic maintenance resources in the honeybee worker fat body are distributed to withstand the most life-threatening challenges at each life stage. PLoS ONE, 8(8), e69870.CrossRefGoogle ScholarPubMed
Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11(4), 287–93.CrossRefGoogle Scholar
Shanley, D. P. & Kirkwood, T. B. L. (2000). Calorie restriction and aging: a life-history analysis. Evolution, 54(3), 740–50.Google ScholarPubMed
Sheng, Z., Xu, J., Bai, H., et al. (2011). Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum. Journal of Biological Chemistry, 286(49), 41924–36.CrossRefGoogle ScholarPubMed
Shringarpure, R. & Davies, K. J. A. (2009). Free radicals and oxidative stress in aging. In Handbook of Theories of Aging, ed. Bengston, V. L., Gans, D., Putney, N. M. & Silverstein, M. (chap. 13, pp. 229–43) (New York: Springer).Google Scholar
Smedal, B., Brynem, M., Kreibich, C. D. & Amdam, G. V. (2009). Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). Journal of Experimental Biology, 212(23), 3795–801.CrossRefGoogle ScholarPubMed
Tanaka, E. D. & Hartfelder, K. (2004). The initial stages of oogenesis and their relation to differential fertility in the honey bee (Apis mellifera) castes. Arthropod Structure and Development, 33(4), 431–42.CrossRefGoogle ScholarPubMed
Tolfsen, C. C., Baker, N., Kreibich, C. & Amdam, G. V. (2011). Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing. Journal of Experimental Biology, 214(8), 1322–32.CrossRefGoogle Scholar
Tsuji, K., Kikuta, N. & Kikuchi, T. (2012). Determination of the cost of worker reproduction via diminished life span in the ant Diacamma sp. Evolution, 66(5), 1322–31.CrossRefGoogle ScholarPubMed
Tsuji, K., Nakata, K. & Heinze, J. (1996). Lifespan and reproduction in a queenless ant. Naturwissenschaften, 83(12), 577–8.CrossRefGoogle Scholar
Wagner, D. & Gordon, D. M. (1999). Colony age, neighborhood density and reproductive potential in harvester ants. Oecologia, 119(2), 175–82.CrossRefGoogle ScholarPubMed
Wang, Y., Brent, C. S., Fennern, E., & Amdam, G. V. (2012). Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS GENETICS, 8(6), e1002779.CrossRefGoogle ScholarPubMed
Wang, Y., Mutti, N. S., Ihle, K. E., et al. (2010). Down-regulation of honey bee IRS gene biases behavior toward food rich in protein. PLoS GENETICS, 6(4), e1000896.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11(4), 398411.CrossRefGoogle Scholar
Wilson, E. O. (1971). The Insect Societies (Cambridge, MA: Bellknap Press/Harvard University Press).Google Scholar
Wolschin, F., Mutti, N. S. & Amdam, G. V. (2011). Insulin receptor substrate influences female caste development in honeybees. Biology Letters, 7(1), 112–15.CrossRefGoogle ScholarPubMed
Woyciechowski, M. & Moroń, D. (2009). Life expectancy and onset of foraging in the honeybee (Apis mellifera). Insectes Sociaux, 56(2), 193201.CrossRefGoogle Scholar
Zheng, H., Zhang, Q., Liu, H., et al. (2012). Cloning and expression of vitellogenin (Vg) gene and its correlations with total carotenoids content and total antioxidant capacity in noble scallop Chlamys nobilis (Bivalve: Pectinidae). Aquaculture, 366, 4653.CrossRefGoogle Scholar
Zhou, X., Oi, F. M. & Scharf, M. E. (2006). Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4499–504.Google Scholar
Zhou, X., Wheeler, M. M., Oi, F. M. & Scharf, M. E. (2008). RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38(8), 805–15.CrossRefGoogle ScholarPubMed

References

Babcook, R. (1991). Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecological Monographs, 61, 225–44.Google Scholar
Ballarin, L., Cima, F. & Sabbadin, A. (1998). Apoptosis during the takeover phase of the ascidian Botryllus schlosseri colonial life cycle. Animal Biology, 7, 86.Google Scholar
Ballarin, L., Burighel, P. & Cima, F. (2008). A tale of death and life: natural apoptosis in the colonial ascidian Botryllus schlosseri (Urochordata, Ascidiacea). Current Pharmaceutical Design, 14, 138–47.CrossRefGoogle ScholarPubMed
Berrill, N. J. (1941). The development of the bud in Botryllus. Biology Bulletin, 80, 169–84.Google Scholar
Berrill, N. J. (1950a). The Tunicata (London: Ray Society).Google Scholar
Berrill, N. J. (1950b). The Tunicata with an Account of the British Species (London: Ray Society).Google Scholar
Berrill, N. J. (1951). Regeneration and budding in tunicates. Biological Reviews, 26, 451–75.CrossRefGoogle Scholar
Borges, R. M. (2009). Phenotypic plasticity and longevity in plants and animals: cause and effect? Journal of Biosciences, 84, 605–11.Google Scholar
Boyd, H. C., Brown, S. K., Harp, J. A. & Weissman, I. L. (1986). Growth and sexual maturation of laboratory-cultured Monterey Botryllus schlosseri. Biological Bulletin, 170, 91109.CrossRefGoogle Scholar
Brown, D. P., Basch, L., Barshis, D., et al. (2009). American Samoa’s island of giants: massive Porites colonies at Ta’u island. Coral Reefs, 28, 735.CrossRefGoogle Scholar
Brunetti, R. (1974). Observations on the life cycle of Botryllus schlosseri (Pallas) (Ascidiacea) in the Venetian lagoon. Italian Journal of Zoology, 41, 225–51.Google Scholar
Brunetti, R. & Copello, M. (1978). Growth and senescence in colonies of Botryllus schlosseri (Pallas) (Ascidiacea). Italian Journal of Zoology, 45, 359–64.Google Scholar
Buss, L. W. (1983). Evolution, development and the units of selection. Proceedings of the National Academy of Science the United States of America, 80, 1387–91.CrossRefGoogle ScholarPubMed
Chadwick-Furman, N. E. & Weissman, I. L. (1995). Life histories and senescence of Botryllus schlosseri (Chordata, Ascidiacea) in Monterey Bay. Biological Bulletin, 89, 3641.CrossRefGoogle Scholar
Cima, F., Manni, L., Basso, G., et al. (2010). Hovering between death and life: natural apoptosis and phagocytes in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri. Developmental and Comparative Immunology, 34, 272–85.CrossRefGoogle ScholarPubMed
Curran, S. P., Wu, X. D., Riedel, C. G. & Ruvkun, G. (2009). A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants. Nature 459, 1079–84.CrossRefGoogle ScholarPubMed
Das, U. & Das, A. K. (2000). Review of canine transmissible venereal sarcoma. Veterinary Research Communications, 24, 545–56.CrossRefGoogle ScholarPubMed
Elahi, R. & Edmunds, P. J. (2007a). Tissue age affects calcification in the scleractinian coral Madracis mirabilis. Biological Bulletin, 212, 20–8.CrossRefGoogle ScholarPubMed
Elahi, R. & Edmunds, P. J. (2007b). Consequences of fission in the coral Siderastrea siderea: growth rates of small colonies and clonal input to population structure. Coral Reefs, 26, 271–6.CrossRefGoogle Scholar
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Finch, C. E. (1998). Variations in senescence and longevity include the possibility of negligible senescence. The Journals of Gerontology Series B: Biological Sciences 53A, B235–9.Google Scholar
Finch, C. E. (2009). Update on slow aging and negligible senescence: mini-review. Gerontology, 55, 307–13.CrossRefGoogle ScholarPubMed
Finkel, T. & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239–47.CrossRefGoogle ScholarPubMed
Grigg, R. (1977). Population dynamics of two gorgonian corals. Ecology, 58, 278–90.CrossRefGoogle Scholar
Grosberg, R. K. (1988). Life history within a population of the colonial ascidian Botryllus schlosseri: I. The genetic and environmental control of seasonal variation. Evolution, 42, 900–20.Google Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harvell, C. D. & Grosberg, R. K. (1988). The timing of sexual maturity in clonal animals. Ecology, 69, 1855–64.CrossRefGoogle Scholar
Heininger, K. (2012). The germ-soma conflict theory of aging and death: obituary to the ‘Evolutionary theories of aging’. WebmedCentral AGING, 3(4), WMC003275. doi: 10.9754/journal.wmc. 2012.003275Google Scholar
Hughes, K. A. & Reynolds, R. M. (2005). Evolutionary and mechanistic theories of aging. Annual Review of Entomology, 50, 421–45.CrossRefGoogle ScholarPubMed
Hughes, R. N. (1989). A Functional Biology of Clonal Animals (London: Chapman & Hall).Google Scholar
Hughes, T. P. & Jackson, J. B. C. (1980). Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science, 209, 713–15.CrossRefGoogle ScholarPubMed
Izzard, C. S. (1973). Development of polarity and bilateral asymmetry in the palleal bud of Botryllus schlosseri (Pallas). Journal of Morphology, 139, 126.CrossRefGoogle ScholarPubMed
Jackson, J. B. C. & Coates, A. G. (1986). Life cycles and evolution of clonal modular animals. Philosophical Transactions of the Royal Society London Series B: Biological Sciences, 313, 722.Google Scholar
Jackson, J. B. C. & Hughes, T. P. (1985). Adaptive strategies of coral reef invertebrates. American Scientist, 73, 265–73.Google Scholar
Kawamura, K., Kitamura, S., Sekida, S., et al. (2012). Molecular anatomy of tunicate senescence: reversible function of mitochondrial and nuclear genes associated with budding cycles. Development, 139, 4083–93.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell, 120, 437–47.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Holliday, F. R. S. (1979). The evolution of ageing and longevity. Proceedings of the Royal Society of London Series B: Biological Sciences, 205, 531–46.Google ScholarPubMed
Kojis, B. L. & Quinn, N. J. (1985). Puberty in Goniastrea favulus age or size limited? In Proceedings of the 5th International Coral Reef Congress, Vol. 4 (pp. 289–93).Google Scholar
Lauzon, R. J., Ishizuka, K. J. & Weissman, I. L. (1992). A cyclical, developmentally regulated death phenomenon in a colonial urochordate. Developmental Dynamics, 94, 7183.CrossRefGoogle Scholar
Lauzon, R. J., Patton, C. W. & Weissman, I. L. (1993). A morphological and immunohistochemical study of programmed cell death in Botryllus schlosseri (Tunicata, Ascidiacea). Cell Tissue Research, 272, 115–27.CrossRefGoogle ScholarPubMed
Lauzon, R. J., Kidder, S. J. & Long, P. (2007). Suppression of programmed cell death regulates the cyclical degeneration of organs in a colonial urochordate. Developmental Biology, 301, 92105.CrossRefGoogle Scholar
Lauzon, R. J., Rinkevich, B., Patton, C. W. & Weissman, I. L. (2000). A morphological study of non-random senescence in a colonial urochordate. Biological Bulletin, 198, 367–78.CrossRefGoogle Scholar
Manni, L., Zaniolo, G., Cima, F., et al. (2007). Botryllus schlosseri: a model ascidian for the study of asexual reproduction. Developmental Dynamics, 236, 335–52.CrossRefGoogle Scholar
Medawar, P. B. (1952). An Unsolved Problem in Biology (London: Lewis.Google Scholar
Meesters, E. H. & Bak, R. P. M. (1995). Age-related deterioration of a physiological function in the branching coral Acropora palmata. Marine Ecology Progress Series, 121, 203–9.CrossRefGoogle Scholar
Mitteldorf, J. (2010). Aging is not a process of wear and tear. Rejuvenation Research, 13, 322–6.CrossRefGoogle Scholar
Mukai, H. & Watanabe, H. (1976). Studies on the formation of germ cells in a compound ascidian Botryllus primigenus Oka. Journal of Morphology, 148, 377–82.CrossRefGoogle Scholar
Murchison, E. P. (2008). Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene, 27, S1930.CrossRefGoogle ScholarPubMed
Sköld, H. N. & Obst, M. (2011). Potential for clonal animals in longevity and ageing studies. Biogerontology, 12, 387–96.Google Scholar
Palumbi, S. R. & Jackson, J. B. C. (1983). Aging in modular organisms: ecology of zooid senescence in Steginoporella sp. (Bryozoa, Cheilostomata). Biological Bulletin, 164, 267–78.CrossRefGoogle Scholar
Piraino, S., De Vito, D., Schmich, J. et al. (2004). Reverse development in Cnidaria. Canadian Journal of Zoology, 82, 1748–54.CrossRefGoogle Scholar
Rabinowitz, C. & Rinkevich, B. (2004). In vitro delayed senescence of extirpated buds from zooids of the colonial tunicate, Botryllus schlosseri. Journal of Experimental Biology, 207, 1523–32.CrossRefGoogle ScholarPubMed
Rabinowitz, C. & Rinkevich, B. (2011). De novo emerged stemness signatures in epithelial monolayers developed from extirpated palleal buds. In Vitro Cellular and Developmental Biology: Animal, 47, 2631.CrossRefGoogle ScholarPubMed
Rabinowitz, C., Alphasi, G. & Rinkevich, B. (2009). Further portrayal of epithelial monolayers, emergent de novo from extirpated ascidians’ palleal buds. In Vitro Cellular and Developmental Biology: Animal, 45, 334–42.CrossRefGoogle ScholarPubMed
Rebbeck, C. A., Thomas, R., Breen, M., et al. (2009). Origins and evolution of a transmissible cancer. Evolution, 63, 2340–9.CrossRefGoogle ScholarPubMed
Rinkevich, B. (2000). A critical approach to the definition of Darwinian units of selection. Biological Bulletin, 199, 231–40.CrossRefGoogle Scholar
Rinkevich, B. (2002). The branching coral Stylophora pistillata: the contribution of genetics in shaping colony landscape. Israel Journal of Zoology, 48, 7182.CrossRefGoogle Scholar
Rinkevich, B. & Loya, Y. (1986). Senescence and dying signals in a reef building coral. Experientia, 42, 320–2.CrossRefGoogle Scholar
Rinkevich, B. & Shapira, M. (1998). An improved diet for inland broodstock and the establishment of an inbred line from Botryllus schlosseri, a colonial sea squirt (Ascidiacea). Aquatic Living Resources, 11, 163–71.CrossRefGoogle Scholar
Rinkevich, B. & Weissman, I. L. (1990). Botryllus schlosseri (Tunicata) whole colony irradiation: do senescent zooid resorption and immunological resorption involve similar recognition events? Journal of Experimental Zoology, 253, 189201.CrossRefGoogle ScholarPubMed
Rinkevich, B., Shlemberg, Z. & Fishelson, L. (1995). Whole body protochordate regeneration from totipotent blood cells. Proceedings of the National Academy of Sciences of the United States of America, 92, 7695–9.Google ScholarPubMed
Rinkevich, B., Porat, R. & Goren, M. (1998). On the development and reproduction of Botryllus schlossen (Tunicata) colonies from the eastern Mediterranean Sea: plasticity of life history traits. Invertebrate Reproduction and Development, 34, 207–18.CrossRefGoogle Scholar
Rinkevich, B., Lauzon, R. J., Brown, B. W. & Weissman, I. L. (1992). Evidence for a programmed lifespan in a colonial protochordate. Proceedings of the National Academy of Sciences the United States of America, 89, 3456–550.CrossRefGoogle Scholar
Rinkevich, Y., Paz, G., Rinkevich, B. & Reshef, R. (2007). Systemic bud induction and retinoic acid signaling underlie whole body regeneration in urochordate Botrylloides leachi. PLoS Biology, 5, 900–13.CrossRefGoogle ScholarPubMed
Rinkevich, Y., Voskoboynik, A., Rosner, A., et al. (2013). Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Developmental Cell, 24, 7688.CrossRefGoogle Scholar
Roark, E. B., Guilderson, T. P., Dunbar, R. B., et al. (2009). Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences the United States of America, 106, 5204–8.CrossRefGoogle ScholarPubMed
Roach, D. A. & Gampe, J. (2004). Age‐specific demography in Plantago: uncovering age‐dependent mortality in a natural population. American Naturalist, 164, 60–9.CrossRefGoogle Scholar
Rosen, B. R. (1986). Modular growth and form of corals: a matter of metamers? Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 313, 115–42.Google Scholar
Rosner, A., Moiseeva, E., Rinkevich, Y., et al. (2009). Vasa and the germ line lineage in colonial urochordate. Developmental Biology 331, 113–28.CrossRefGoogle ScholarPubMed
Salguero‐Gómez, R. & Casper, B. B. (2010). Keeping plant shrinkage in the demographic loop. Journal of Ecology, 98, 312–23.CrossRefGoogle Scholar
Simon-Blecher, N., Achituv, Y., & Rinkevich, B. (2004). Protochordate concordant xeno-transplantation settings reveal outbreaks of donor cells and divergent lifespan traits. Developmental and Comparative Immunology, 28, 983–91.CrossRefGoogle Scholar
Tanner, J. E. (2001). The influence of clonality on demography: patterns in expected longevity and survivorship. Ecology, 82, 1971–81.CrossRefGoogle Scholar
Tuomi, J. & Vuorisalo, T. (1989). Hierarchical selection in modular organisms. Trends in Ecology & Evolution, 14, 209–13.Google Scholar
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Voskoboynik, A., Reznick, A. Z. & Rinkevich, B. (2002). Rejuvenescence and extension of a urochordate lifespan following a single, acute administration of an anti-oxidant, butylated hydroxytoluene. Mechanisms of Ageing and Development, 123, 1203–10.CrossRefGoogle ScholarPubMed
Voskoboynik, A., Rinkevich, B.A. Weiss, E. et al. (2004). Macrophage involvement for successful degeneration of apoptotic organs in the colonial urochordate Botryllus schlosseri. Journal of Experimental Biology 207, 2409–16.CrossRefGoogle ScholarPubMed
Voskoboynik, A., Simon-Blecher, N. Soen, Y., et al. (2007). Striving for normality: whole body regeneration through a series of abnormal generations. FASEB Journal 21, 1335–44.CrossRefGoogle ScholarPubMed
Voskoboynik, A., Soen, B., Rinkevich, Y., et al. (2008). Identification of the endostyle as a stem cell niche in a basal chordate. Cell Stem Cell, 3, 456–64.CrossRefGoogle Scholar
Yund, P. O., & Stires, A. (2002). Spatial variation in population dynamics in a colonial ascidian (Botryllus schlosseri). Marine Biology, 141, 955–63.CrossRefGoogle Scholar

References

Abele, D., Brey, T. & Philipp, E. (2009). Bivalve models of aging and the determination of molluscan lifespans. Experimental Gerontology, 44, 307–15.CrossRefGoogle ScholarPubMed
Adami, C. (2002). What is complexity? BioEssays, 24, 1085–94.CrossRefGoogle ScholarPubMed
Ally, D., Ritland, K. & Otto, S. P. (2010). Aging in a long-lived clonal tree. PLoS Biology, 8(8): e1000454.CrossRefGoogle Scholar
Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–6.CrossRefGoogle ScholarPubMed
Augustin, R., Fraune, S. & Bosch, T. C. G. (2010). How Hydra senses and destroys microbes. Seminars in Immunology, 22, 54–8.CrossRefGoogle ScholarPubMed
Bell, G. & Wolfe, L. M. (1985). Sexual and asexual reproduction in a natural population of Hydra pseudoligactis. Canadian Journal of Zoology, 63, 851–6.CrossRefGoogle Scholar
Blanpain, C., Mohrin, M., Sotiropoulou, P. A. & Passegue, E. (2011). DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell, 8, 1629.CrossRefGoogle ScholarPubMed
Bode, H., Berking, S., David, C. N., et al. (1973). Quantitative analysis of cell types during growth and morphogenesis in hydra. Wilhelm Roux’ Archiv fuer Entwicklungsmechanik der Organismen, 171, 269–85.Google ScholarPubMed
Bode, H. R. (1996). The interstitial cell lineage of Hydra: a stem cell system that arose early in evolution. Journal of Cell Science, 109, 1155–64.CrossRefGoogle ScholarPubMed
Bosch, T. C. G. (2012). Understanding complex host-microbe interactions in Hydra. Gut Microbes, 3, 345–51.CrossRefGoogle ScholarPubMed
Bosch, T. C. G., Anton-Erxleben, F., Hemmrich, G. & Khalturin, K. (2010). The Hydra polyp: nothing but an active stem cell community. Development Growth and Differentiation, 52, 1525.CrossRefGoogle ScholarPubMed
Bosch, T. C. G. & David, C. N. (1984). Growth-regulation in Hydra: relationship between epithelial-cell cycle length and growth-rate. Developmental Biology, 104, 161–71.CrossRefGoogle ScholarPubMed
Branzei, D. & Foiani, M. (2008). Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology, 9, 297308.CrossRefGoogle ScholarPubMed
Brien, P. (1953). La Perennité Somatique. Biological Reviews of the Cambridge Philosophical Society, 28, 308–49.CrossRefGoogle Scholar
Brock, M. A. (1974). Growth, developmental, and longevity rhythms in Campanularia flexuosa. American Journal of Zoology, 14, 757–71.Google Scholar
Buss, L. W. (1985). The uniqueness of the individual revisited. In Population Biology and Evolution of Clonal Organisms, ed. Jackson, J. B. C., Buss, L. W. & Cook, R. E. (pp. 467506 ) (New Haven, CT: Yale University Press).Google Scholar
Campbell, R. D. (1967). Tissue dynamics of steady state growth in Hydra littoralis: I. Patterns of cell division. Developmental Biology, 15, 487.CrossRefGoogle ScholarPubMed
Campbell, R. D. (1987). A new species of Hydra (Cnidaria, Hydrozoa) from North America with comments on species clusters within the genus. Zoological Journal of the Linnean Society, 91, 253–63.CrossRefGoogle Scholar
Caswell, H. (1985). The evolutionary demography of clonal reproduction. In Population Biology and Evolution of Clonal Organisms, ed. Jackson, J. B. C., Buss, L. W. & Cook, R. E. (pp. 187224) (New Haven, CT: Yale University Press).Google Scholar
Changizi, M., Mcdannald, M. & Widders, D. (2002). Scaling of differentiation in networks: nervous systems, organisms, ant colonies, ecosystems, businesses, universities, cities, electronic circuits, and Legos. Journal of Theoretical Biology, 218, 215–37.CrossRefGoogle ScholarPubMed
Chera, S., Buzgariu, W., Ghila, L. & Galliot, B. (2009). Autophagy in Hydra: a response to starvation and stress in early animal evolution. Biochimica et Biophysica Acta, 1793(9), 1432–43.Google ScholarPubMed
Congdon, J. D., Nagle, R. D., Kinney, O. M., et al. (2003). Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta). Experimental Gerontology, 38, 765–72.CrossRefGoogle ScholarPubMed
Cuker, B. E. & Mozley, S. C. (1981). Summer population fluctuations, feeding, and growth of Hydra in an arctic lake. Limnology and Oceanography, 26, 697708.CrossRefGoogle Scholar
Damman, H. & Cain, M. L. (1998). Population growth and viability analyses of the clonal woodland herb, Asarum canadense. Journal of Ecology, 86, 1326.CrossRefGoogle Scholar
Dańko, M. J., Kozłowski, J. & Schaible, R. (2015). Unraveling the non-senescence phenomenon in Hydra. Journal of Theoretical Biology, 382, 137–49.CrossRefGoogle ScholarPubMed
De Witte, L. C., Scherrer, D. & Stoecklin, J. (2011). Genet longevity and population age structure of the clonal pioneer species Geum reptans based on demographic field data and projection matrix modelling. Preslia, 83, 371–86.Google Scholar
De Witte, L. C. & Stoecklin, J. (2010). Longevity of clonal plants: why it matters and how to measure it. Annals of Botany, 106, 859–70.CrossRefGoogle Scholar
Ender, A. (1997). Untersuchungen zur Evolutionsgenetik des athekaten Hydrozoons Eleutheria dichotoma (Quatrefages 1842). PhD dissertation, Frankfurt am Main, University, Germany.Google Scholar
Fraune, S. & Bosch, T. C. G. (2007). Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proceedings of the National Academy of Sciences of the United States of America, 104, 13146–51.Google ScholarPubMed
Gierer, A., Bode, H., Berking, S., et al. (1972). Regeneration of hydra from reaggregated cells. Nature-New Biology, 239, 98.CrossRefGoogle ScholarPubMed
Grassi, M., Tardent, R. & Tardent, P. (1995). Quantitative data about gametogenesis and embryonic development in Hydra vulgaris Pall (Cnidaria, Hydrozoa). Invertebrate Reproduction and Development, 27, 219–32.CrossRefGoogle Scholar
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harper, J. L. (1977). Population Biology of Plants (London: Academic Press).Google Scholar
Hartnett, D. & Bazzaz, F. (1985). The genet and ramet population dynamics of Solidago canadensis in an abandoned field. Journal of Ecology, 407–13.CrossRefGoogle Scholar
Hase, A. (1909). Über die deutschen Süßwasserpolypen Hydra fusca. L., Hydra grisea L. und Hydra viridis L: Eine biologische Vorarbeit, zugleich ein Beitrag zur Vererbungslehre. Archiv für Rassen- und Gesellschafts-Biologie 6, 721–53.Google Scholar
Hayflick, L. (1965). Limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614–36.CrossRefGoogle ScholarPubMed
Hobmayer, B., Jenewein, M., Eder, D., et al. (2012). Stemness in Hydra: a current perspective. International Journal of Developmental Biology, 56, 509–17.CrossRefGoogle ScholarPubMed
Holstein, T. & Emschermann, P. (1995). Cnidaria, Hydrozoa (G. Fischer).Google Scholar
Hughes, R. G. (1987). The loss of hydranths of Laomedea flexuosa Alder and other hydroids, with reference to hydroid senescence. In Modern Trends in the Systematics, ecology, and Evolution of Hydroids and Hydromedusae, ed. Bouillon, J. F., Boero, F., Cicogna, F. & Cornelius, P. F. S. (pp. 171–84 )(Oxford: Clarendon Press).Google Scholar
Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Reviews Microbiology, 11, 443–54.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 270, 301–4.Google Scholar
Karlson, R. H. (1986). Disturbance, colonial fragmentation, and size-dependent life history variation in two coral reef cnidarians. Marine Ecology Progress Series, 28, 245–9.CrossRefGoogle Scholar
Kawaida, H., Shimizu, H., Fujisawa, T., et al. (2010). Molecular phylogenetic study in genus Hydra. Gene, 468, 3040.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270, 301–4.CrossRefGoogle Scholar
Kirkwood, T. B. L. (1991). Longevity, senescence, and the genome: Finch, Ce. Science, 252, 1864–5.Google Scholar
Kirkwood, T. B. L. (2005). Understanding the odd science of aging. Cell, 120, 437–47.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Austad, S. N. (2000). Why do we age? Nature, 408, 233–8.CrossRefGoogle ScholarPubMed
Krafts, K. P. (2010). Tissue repair: the hidden drama. Organogenesis, 6, 225–33.CrossRefGoogle ScholarPubMed
Kramer, B. H. & Schaible, R. (2013). Life span evolution in eusocial workers: a theoretical approach to understanding the effects of extrinsic mortality in a hierarchical system. Plos ONE, 8(4): e61813.CrossRefGoogle Scholar
Martínez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experimental Gerontology, 33, 217–25.CrossRefGoogle ScholarPubMed
Martínez, D. E. (2002). Senescence and rejuvenation in asexual metazoans. In Reproductive Biology of Invertebrates, Vol. XI: Progress in Asexual Reproduction, ed. Hughes, R. N. (pp. 115–40 ) (New York: Wiley).Google Scholar
Martínez, D. E., Iniguez, A. R., Percell, K. M., et al. (2010). Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 57, 403–10.CrossRefGoogle ScholarPubMed
Martínez, D. E. & Levinton, J. S. (1992). Asexual metazoans undergo senescence. Proceedings of the National Academy of Sciences of the United States of America, 89, 9920–3.Google ScholarPubMed
Medawar, P. B. (1952). Uniqueness of the Individual: An Unsolved Problem of Biology (pp. 4470 ) (London: Lewis).Google Scholar
Moore, L. B. & Campbell, R. D. (1973). Non‐budding strains of Hydra: isolation from sexual crosses and developmental regulation of form. Journal of Experimental Zoology, 185, 7381.CrossRefGoogle ScholarPubMed
Nilsson Skold, H. & Obst, M. (2011). Potential for clonal animals in longevity and ageing studies. Biogerontology, 12, 387–96.CrossRefGoogle ScholarPubMed
Orive, M. E. (1995). Senescence in organisms with clonal reproduction and complex life-histories. American Naturalist, 145, 90108.CrossRefGoogle Scholar
Otto, J. J. & Campbell, R. D. (1977). Budding in Hydra attenuata: bud stages and fate map. Journal of Experimental Zoology, 200, 417–28.Google ScholarPubMed
Quinn, B., Gagne, F. & Blaise, C. (2012). Hydra, a model system for environmental studies. International Journal of Developmental Biology, 56, 613–25.CrossRefGoogle Scholar
Reznick, D. N., Bryant, M. J., Roff, D., et al. (2004). Effect of extrinsic mortality on the evolution of senescence in guppies. Nature, 431, 1095–9.CrossRefGoogle ScholarPubMed
Ribi, G., Tardent, R., Tardent, P. & Scascighini, C. (1985). Dynamics of Hydra populations in Lake Zurich, Switzerland, and Lake Maggiore, Italy. Schweizerische Zeitschrift fur Hydrologie, 47, 4556.CrossRefGoogle Scholar
Ricklefs, R. E. (1979). Adaptation, constraint, and compromise in avian postnatal-development. Biological Reviews of the Cambridge Philosophical Society, 54, 269–90.CrossRefGoogle ScholarPubMed
Robert, K. A. & Bronikowski, A. M. (2010). Evolution of senescence in nature: physiological evolution in populations of garter snake with divergent life histories. American Naturalist, 175, 147–59.CrossRefGoogle ScholarPubMed
Roos, W. P. & Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine, 12, 440–50.CrossRefGoogle ScholarPubMed
Salo, E. (2006). The power of regeneration and the stem-cell kingdom: freshwater planarians (platyhelminthes). Bioessays, 28, 546–59.CrossRefGoogle ScholarPubMed
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73, 3985.CrossRefGoogle ScholarPubMed
Schaible, R., Ringelhan, F., Kramer, B. H. & Miethe, T. (2011). Environmental challenges improve resource utilization for asexual reproduction and maintenance in Hydra. Experimental Gerontology, 46, 794802.CrossRefGoogle ScholarPubMed
Schaible, R., Scheuerlein, A., Dańko, M. J., et al. (2015). Constant mortality and fertility over age in Hydra. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15701–6.Google ScholarPubMed
Schaible, R. & Sussman, M. (2013). FOXO in aging: did evolutionary diversification of FOXO function distract it from prolonging life? Bioessays, 35, 1101–10.CrossRefGoogle ScholarPubMed
Schaible, R., Sussman, M. & Boris, K. H. (2014). Aging and the potential of self-renewal: Hydra living in the age of aging – a mini-review. Gerontology, 60, 548–56.CrossRefGoogle ScholarPubMed
Schierwater, B., Eitel, M., Jakob, W., et al. (2009). Concatenated analysis sheds light on early metazoan evolution and fuels a modern ‘urmetazoon’ hypothesis. PLoS Biology, 7(1): e1000020.CrossRefGoogle Scholar
Shapiro, F. (2008). Bone development and its relation to fracture repair: the role of mesenchymal osteoblasts and surface osteoblasts. European Cells and Materials, 15, 5376.CrossRefGoogle ScholarPubMed
Shimizu, H., Sawada, Y. & Sugiyama, T. (1993). Minimum tissue size required for Hydra regeneration. Developmental Biology, 155, 287–96.CrossRefGoogle ScholarPubMed
Sparkman, A. M., Vleck, C. M. & Bronikowski, A. M. (2009). Evolutionary ecology of endocrine-mediated life-history variation in the garter snake Thamnophis elegans. Ecology, 90, 720–8.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories (New York, Oxford University Press).Google Scholar
Steele, R. E. (2002). Developmental signalling in Hydra: what does it take to build a ‘simple’ animal? Developmental Biology, 248, 199219.CrossRefGoogle ScholarPubMed
Stewart, E. J., Madden, R., Paul, G. & Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, 295300.CrossRefGoogle Scholar
Sugiyama, T. & Fujisawa, T. (1977). Genetic analysis of developmental mechanisms in hydra: I. Sexual reproduction of Hydra magnipapillata and isolation of mutants. Development, Growth and Differentiation, 19, 187200.CrossRefGoogle ScholarPubMed
Tanner, J. E. (2001). The influence of clonality on demography: patterns in expected longevity and survivorship. Ecology, 82, 1971–81.CrossRefGoogle Scholar
Technau, U. & Steele, R. E. (2011). Evolutionary crossroads in developmental biology: Cnidaria. Development, 138, 1447–58.CrossRefGoogle ScholarPubMed
Tumarkin-Deratzian, A. R., Vann, D. R. & Dodson, P. (2007). Growth and textural ageing in long bones of the American alligator Alligator mississippiensis (Crocodylia: Alligatoridae). Zoological Journal of the Linnean Society, 150, 139.CrossRefGoogle Scholar
Von Bertalanffy, L. (1948). Das organische Wachstum und seine Gesetzmäßigkeiten. Experientia, 4, 255–69.CrossRefGoogle Scholar
Wang, P., Robert, L., Pelletier, J., et al. (2010). Robust growth of Escherichia coli. Current Biology, 20, 10991103.CrossRefGoogle ScholarPubMed
Warren, A. & Robson, E.A. (1998). The identity and occurrence of Kerona pediculus (Ciliophora: Hypotrichida), a well-known epizoite of Hydra vulgaris (Cnidaria: Hydrozoa). Zoologische Verhandelingen (Leiden), 323, 235–45.Google Scholar
Watkinson, A. (1992). Plant senescence. Trends in Ecology and Evolution, 7, 417–20.CrossRefGoogle ScholarPubMed
Watson, M. A. & Casper, B. B. (1984). Morphogenetic constraints on patterns of carbon distribution in plants. Annual Review of Ecology and Systematics, 15, 233–58.CrossRefGoogle Scholar
Welch, P. S. & Loomis, H. A. (1924). A limnological study of Hydra oligactis in Douglas Lake, Michigan. Transactions of the American Microscopical Society, 43, 203–35.CrossRefGoogle Scholar
Williams, P. D. & Day, T. (2003). Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution, 57, 1478–88.Google ScholarPubMed
Williams, P. D., Day, T., Fletcher, Q. & Rowe, L. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21, 458–63.CrossRefGoogle ScholarPubMed
Yoshida, K., Fujisawa, T., Hwang, J. S., et al. (2006). Degeneration after sexual differentiation in Hydra and its relevance to the evolution of aging. Gene, 385, 6470.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×