Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T07:29:23.554Z Has data issue: false hasContentIssue false

1 - Presynaptic adaptive responses to constitutive versus adult pharmacologic inhibition of serotonin uptake

Published online by Cambridge University Press:  06 July 2010

Allan V. Kalueff
Affiliation:
Georgetown University Medical Center
Justin L. LaPorte
Affiliation:
National Institute of Mental Health
Get access

Summary

ABSTRACT

Many antidepressants are believed to relieve depressed mood and excessive anxiety by inhibiting the reuptake of serotonin so as to cause increases in extracellular serotonin. This homeostatic alteration is thought to underlie further adaptive processes – which have not been fully clarified – that together constitute the cellular mechanisms of current antidepressant therapy. Here, we review the literature on presynaptic adaptive responses to chronic antidepressant treatment, focusing on alterations in serotonin transporter (SERT) expression, extracellular and intracellular serotonin levels, and serotonergic innervation. We contrast this with studies on constitutive loss of SERT gene expression. A partial genetic reduction in SERT expression results in modest increases in extracellular serotonin, while the total absence of SERT is associated with substantial increases in extracellular serotonin, decreases in intracellular serotonin, and a reduction in serotonin immunopositive cell bodies and axons in the dorsal raphe and hippocampus, respectively. Adaptive changes in SERT protein levels and extracellular and intracellular serotonin concentrations following many different regimens of chronic antidepressant administration were found to be more variable, often falling in between those resulting from partial and complete genetic ablation of SERT. This might reflect incomplete pharmacologic inhibition of SERT and the wide variety of drug administration paradigms utilized. The microdialysis literature, in particular, suggests that it is difficult to conclude that chronic antidepressant treatment reliably causes elevated extracellular serotonin.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altamura, C, Dell'Acqua, M L, Moessner, R, Murphy, D L, Lesch, K P, Persico, A M (2007). Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: a quantitation study. Cereb Cortex 17: 1394–401.CrossRefGoogle ScholarPubMed
Amargos-Bosch, M, Artigas, F, Adell, A (2005). Effects of acute olanzapine after sustained fluoxetine on extracellular monoamine levels in the rat medial prefrontal cortex. Eur J Pharmacol 516: 235–8.CrossRefGoogle ScholarPubMed
Andersen, S L, Dumont, N L, Teicher, M H (2002). Differences in behavior and monoamine laterality following neonatal clomipramine treatment. Dev Psychobiol 41: 50–7.CrossRefGoogle ScholarPubMed
Andrews, A M, Ladenheim, B, Epstein, C J, Cadet, J L, Murphy, D L (1996). Transgenic mice with high levels of superoxide dismutase activity are protected from the neurotoxic effects of 2′-NH2-MPTP on serotonergic and noradrenergic nerve terminals. Mol Pharmacol 50: 1511–9.Google ScholarPubMed
Ansorge, M S, Morelli, E, Gingrich, J A (2008). Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28: 199–207.CrossRefGoogle Scholar
Ansorge, M S, Zhou, M, Lira, A, Hen, R, Gingrich, J A (2004). Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306: 879–81.CrossRefGoogle ScholarPubMed
Arborelius, L, Nomikos, G G, Hertel, P, et al. (1996). The 5-HT1A receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram. Naunyn Schmiedebergs Arch Pharmacol 353: 630–40.CrossRefGoogle ScholarPubMed
Bel, N, Artigas, F (1993). Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphe nuclei. Synapse 15: 243–5.CrossRefGoogle ScholarPubMed
Bel, N, Artigas, F (1996). In vivo effects of the simultaneous blockade of serotonin and norepinephrine transporters on serotonergic function. Microdialysis studies. J Pharmacol Exp Ther 278: 1064–72.Google ScholarPubMed
Bengel, D, Jöhren, O, Andrews, A M, et al. (1997). Cellular localization and expression of the serotonin transporter in mouse brain. Brain Res 778: 338–45.CrossRefGoogle ScholarPubMed
Bengel, D, Murphy, D L, Andrews, A M, et al. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53: 649–55.CrossRefGoogle Scholar
Benmansour, S, Cecchi, M, Morilak, D A, et al. (1999). Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19: 10 494–501.CrossRefGoogle ScholarPubMed
Benmansour, S, Owens, W A, Cecchi, M, Morilak, D A, Frazer, A (2002). Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22: 6766–72.CrossRefGoogle ScholarPubMed
Blakely, R D, Defelice, L J, Galli, A (2005). Biogenic amine neurotransmitter transporters: just when you thought you knew them. Physiology (Bethesda) 20: 225–31.Google Scholar
Bosker, F J, Cremers, T I, Jongsma, M E, Westerink, B H, Wikstrom, H V, Boer, J A (2001). Acute and chronic effects of citalopram on postsynaptic 5-hydroxytryptamine(1A) receptor-mediated feedback: a microdialysis study in the amygdala. J Neurochem 76: 1645–53.CrossRefGoogle ScholarPubMed
Bosker, F J, Klompmakers, A A, Westenberg, H G (1995a). Effects of single and repeated oral administration of fluvoxamine on extracellular serotonin in the median raphe nucleus and dorsal hippocampus of the rat. Neuropharmacology 34: 501–8.CrossRefGoogle ScholarPubMed
Bosker, F J, Esseveldt, K E, Klompmakers, A A, Westenberg, H G (1995b). Chronic treatment with fluvoxamine by osmotic minipumps fails to induce persistent functional changes in central 5-HT1A and 5-HT1B receptors, as measured by in vivo microdialysis in dorsal hippocampus of conscious rats. Psychopharmacology (Berl) 117: 358–63.CrossRefGoogle ScholarPubMed
Brunello, N, Riva, M, Volterra, A, Racagni, G (1987). Effect of some tricyclic and nontricyclic antidepressants on [3H]imipramine binding and serotonin uptake in rat cerebral cortex after prolonged treatment. Fundam Clin Pharmacol 1: 327–33.CrossRefGoogle Scholar
Burnet, P W, Michelson, D, Smith, M A, Gold, P W, Sternberg, E M (1994). The effect of chronic imipramine administration on the densities of 5-HT1A and 5-HT2 receptors and the abundances of 5-HT receptor and transporter mRNA in the cortex, hippocampus and dorsal raphe of three strains of rat. Brain Res 638: 311–24.CrossRefGoogle ScholarPubMed
Caccia, S, Fracasso, C, Garattini, S, Guiso, G, Sarati, S (1992). Effects of short- and long-term administration of fluoxetine on the monoamine content of rat brain. Neuropharmacology 31: 343–7.CrossRefGoogle Scholar
Cases, O, Vitalis, T, Seif, I, Maeyer, E, Sotelo, C, Gaspar, P (1996). Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16: 297–307.CrossRefGoogle ScholarPubMed
Caspi, A, Sugden, K, Moffitt, T E, et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301: 386–9.CrossRefGoogle ScholarPubMed
Castren, E (2004). Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol 4: 58–64.CrossRefGoogle ScholarPubMed
Ceglia, I, Acconcia, S, Fracasso, C, Colovic, M, Caccia, S, Invernizzi, R W (2004). Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol 142: 469–78.CrossRefGoogle ScholarPubMed
Cheetham, S C, Viggers, J A, Slater, N A, Heal, D J, Buckett, W R (1993). [3H]paroxetine binding in rat frontal cortex strongly correlates with [3H]5-HT uptake: effect of administration of various antidepressant treatments. Neuropharmacology 32: 737–43.CrossRefGoogle Scholar
Chefer, V I, Zapata, A, Shippenberg, T S, Bungay, P M (2006). Quantitative no-net-flux microdialysis permits detection of increases and decreases in dopamine uptake in mouse nucleus accumbens. J Neurosci Meth 155: 187–93.CrossRefGoogle ScholarPubMed
Dawson, L A, Nguyen, H Q, Smith, D I, Schechter, L E (2000). Effects of chronic fluoxetine treatment in the presence and absence of (+/−)pindolol: a microdialysis study. Br J Pharmacol 130: 797–804.CrossRefGoogle ScholarPubMed
Dawson, L A, Nguyen, H Q, Smith, D L, Schechter, L E (2002). Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. J Psychopharmacol 16: 145–52.CrossRefGoogle ScholarPubMed
Donovan, S L, Mamounas, L A, Andrews, A M, Blue, M E, McCasland, J S (2002). GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J Neurosci 22: 3543–52.CrossRefGoogle ScholarPubMed
Durand, M, Berton, O, Aguerre, S, et al. (1999). Effects of repeated fluoxetine on anxiety-related behaviors, central serotonergic systems, and the corticotropic axis axis in SHR and WKY rats. Neuropharmacology 38: 893–907.CrossRefGoogle ScholarPubMed
Fabre, V, Beaufour, C, Evrard, A, et al. (2000). Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12: 2299–310.CrossRefGoogle ScholarPubMed
Ferrer, A, Artigas, F (1994). Effects of single and chronic treatment with tranylcypromine on extracellular serotonin in rat brain. Eur J Pharmacol 263: 227–34.CrossRefGoogle ScholarPubMed
Fredricson Overo, K (1982). Kinetics of citalopram in test animals; drug exposure in safety studies. Prog Neuropsychopharmacol Biol Psychiatry 6: 297–309.CrossRefGoogle ScholarPubMed
Gardier, A M, David, D J, Jego, G, et al. (2003). Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout mice. J Neurochem 86: 13–24.CrossRefGoogle ScholarPubMed
Gartside, S E, Leitch, M M, Young, A H (2003). Altered glucocorticoid rhythm attenuates the ability of a chronic SSRI to elevate forebrain 5-HT: implications for the treatment of depression. Neuropsychopharmacology 28: 1572–8.CrossRefGoogle ScholarPubMed
Gobbi, M, Crespi, D, Foddi, M C, et al. (1997). Effects of chronic treatment with fluoxetine and citalopram on 5-HT uptake, 5-HT1B autoreceptors, 5-HT3 and 5-HT4 receptors in rats. Naunyn Schmiedebergs Arch Pharmacol 356: 22–8.CrossRefGoogle ScholarPubMed
Golembiowska, K, Dziubina, A (2000). Effect of acute and chronic administration of citalopram on glutamate and aspartate release in the rat prefrontal cortex. Pol J Pharmacol 52: 441–8.Google ScholarPubMed
Gould, G G, Altamirano, A V, Javors, M A, Frazer, A (2006). A comparison of the chronic treatment effects of venlafaxine and other antidepressants on serotonin and norepinephrine transporters. Biol Psychiatry 59: 408–14.CrossRefGoogle ScholarPubMed
Gould, G G, Javors, M A, Frazer, A (2007). Effect of chronic administration of duloxetine on serotonin and norepinephrine transporter binding sites in rat brain. Biol Psychiatry 61: 210–5.CrossRefGoogle ScholarPubMed
Grabe, H J, Lange, M, Wolff, B, et al. (2005). Mental and physical distress is modulated by a polymorphism in the 5-HT transporter gene interacting with social stressors and chronic disease burden. Mol Psychiatry 10: 220–4.CrossRefGoogle ScholarPubMed
Graham, D, Tahraoui, L, Langer, S Z (1987). Effect of chronic treatment with selective monoamine oxidase inhibitors and specific 5-hydroxytryptamine uptake inhibitors on [3H]paroxetine binding to cerebral cortical membranes of the rat. Neuropharmacology 26: 1087–92.CrossRefGoogle Scholar
Greenberg, B D, Li, Q, Lucas, F R, et al. (2000). Association between the serotonin transporter promoter polymorphism and personality traits in a primarily female population sample. Am J Med Genet 96: 202–16.3.0.CO;2-J>CrossRefGoogle Scholar
Greenberg, B D, Tolliver, T J, Huang, S J, Li, Q, Bengel, D, Murphy, D L (1999). Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am J Med Genet 88: 83–7.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Gross, C, Zhuang, X, Stark, K, et al. (2002). Serotonin1A receptor acts during development to establish normal anxiety-like behavior in the adult. Nature 416: 396–400.CrossRefGoogle ScholarPubMed
Gundlah, C, Hjorth, S, Auerbach, S B (1997). Autoreceptor antagonists enhance the effect of the reuptake inhibitor citalopram on extracellular 5-HT: this effect persists after repeated citalopram treatment. Neuropharmacology 36: 475–82.CrossRefGoogle ScholarPubMed
Gur, E, Dremencov, E, Lerer, B, Newman, M E (1999a). Venlafaxine: acute and chronic effects on 5-hydroxytryptamine levels in rat brain in vivo. Eur J Pharmacol 372: 17–24.CrossRefGoogle ScholarPubMed
Gur, E, Dremencov, E, Kar, L D, Lerer, B, Newman, M E (2002a). Effects of chronically administered venlafaxine on 5-HT receptor activity in rat hippocampus and hypothalamus. Eur J Pharmacol 436: 57–65.CrossRefGoogle ScholarPubMed
Gur, E, Lerer, B, Newman, M E (1999b). Chronic clomipramine and triiodothyronine increase serotonin levels in rat frontal cortex in vivo: relationship to serotonin autoreceptor activity. J Pharmacol Exp Ther 288: 81–7.Google ScholarPubMed
Gur, E, Lifschytz, T, Lerer, B, Newman, M E (2002b). Effects of triiodothyronine and imipramine on basal 5-HT levels and 5-HT(1) autoreceptor activity in rat cortex. Eur J Pharmacol 457: 37–43.CrossRefGoogle ScholarPubMed
Gur, E, Lifschytz, T, Kar, L D, Lerer, B, Newman, M E (2004). Effects of triiodothyronine on 5-HT(1A) and 5-HT(1B) autoreceptor activity, and postsynaptic 5-HT(1A) receptor activity, in rat hypothalamus: lack of interaction with imipramine. Psychoneuroendocrinology 29: 1172–83.CrossRefGoogle ScholarPubMed
Hajos-Korcsok, E, McTavish, S F, Sharp, T (2000). Effect of a selective 5-hydroxytryptamine reuptake inhibitor on brain extracellular noradrenaline: microdialysis studies using paroxetine. Eur J Pharmacol 407: 101–7.CrossRefGoogle ScholarPubMed
Hansen, H H, Sanchez, C, Meier, E (1997). Neonatal administration of the selective serotonin reuptake inhibitor Lu 10–134-C increases forced swimming-induced immobility in adult rats: a putative animal model of depression?J Pharmacol Exp Ther 283: 1333–41.Google ScholarPubMed
Heils, A, Teufel, A, Petri, S, et al. (1996). Allelic variation of human serotonin transporter gene expression. J Neurochem 66: 2621–4.CrossRefGoogle ScholarPubMed
Hervas, I, Vilaro, M T, Romero, L, Scorza, M C, Mengod, G, Artigas, F (2001). Desensitization of 5-HT(1A) autoreceptors by a low chronic fluoxetine dose effect of the concurrent administration of WAY-100635. Neuropsychopharmacology 24: 11–20.CrossRefGoogle ScholarPubMed
Hiemke, C, Hartter, S (2000). Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85: 11–28.CrossRefGoogle ScholarPubMed
Hilakivi, L A, Hilakivi, I (1987). Increased adult behavioral ‘despair’ in rats neonatally exposed to desipramine or zimeldine: an animal model of depression?Pharmacol Biochem Behav 28: 367–9.CrossRefGoogle ScholarPubMed
Hirano, K, Seki, T, Sakai, N, et al. (2005). Effects of continuous administration of paroxetine on ligand binding site and expression of serotonin transporter protein in mouse brain. Brain Res 1053: 154–61.CrossRefGoogle ScholarPubMed
Hjorth, S, Auerbach, S B (1994). Lack of 5-HT1A autoreceptor desensitization following chronic citalopram treatment, as determined by in vivo microdialysis. Neuropharmacology 33: 331–4.CrossRefGoogle ScholarPubMed
Hjorth, S, Auerbach, S B (1999). Autoreceptors remain functional after prolonged treatment with a serotonin reuptake inhibitor. Brain Res 835: 224–8.CrossRefGoogle ScholarPubMed
Holmes, A, Lit, Q, Murphy, D L, Gold, E, Crawley, J N (2003a). Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2: 365–80.CrossRefGoogle ScholarPubMed
Holmes, A, Yang, R J, Lesch, K P, Crawley, J N, Murphy, D L (2003b). Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28: 2077–88.CrossRefGoogle ScholarPubMed
Homberg, J R, Olivier, J D, Smits, B M, et al. (2007). Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system. Neuroscience 146: 1662–76.CrossRefGoogle ScholarPubMed
Horschitz, S, Hummerich, R, Schloss, P (2001). Down-regulation of the rat serotonin transporter upon exposure to a selective serotonin reuptake inhibitor. Neuroreport 12: 2181–4.CrossRefGoogle ScholarPubMed
Hrdina, P D (1987). Regulation of high- and low-affinity [3H]imipramine recognition sites in rat brain by chronic treatment with antidepressants. Eur J Pharmacol 138: 159–68.CrossRefGoogle ScholarPubMed
Hrdina, P D, Vu, T B (1993). Chronic fluoxetine treatment upregulates 5-HT uptake sites and 5-HT2 receptors in rat brain: an autoradiographic study. Synapse 14: 324–31.CrossRefGoogle Scholar
Hwang, E C, Magnussen, I, Woert, M H (1980). Effects of chronic fluoxetine administration on serotonin metabolism. Res Commun Chem Pathol Pharmacol 29: 79–98.Google ScholarPubMed
Iceta, R, Mesonero, J E, Alcalde, A I (2007). Effect of long-term fluoxetine treatment on the human serotonin transporter in Caco-2 cells. Life Sci 80: 1517–24.CrossRefGoogle ScholarPubMed
Invernizzi, R, Bramante, M, Samanin, R (1995). Extracellular concentrations of serotonin in the dorsal hippocampus after acute and chronic treatment with citalopram. Brain Res 696: 62–6.CrossRefGoogle ScholarPubMed
Invernizzi, R, Bramante, M, Samanin, R (1996). Role of 5-HT1A receptors in the effects of acute chronic fluoxetine on extracellular serotonin in the frontal cortex. Pharmacol Biochem Behav 54: 143–7.CrossRefGoogle ScholarPubMed
Invernizzi, R W, Parini, S, Sacchetti, G, et al. (2001). Chronic treatment with reboxetine by osmotic pumps facilitates its effect on extracellular noradrenaline and may desensitize alpha(2)-adrenoceptors in the prefrontal cortex. Br J Pharmacol 132: 183–8.CrossRefGoogle ScholarPubMed
Jennings, K A, Loder, M K, Sheward, W J, et al. (2006). Increased expression of the 5-HT transporter confers a low-anxiety phenotype linked to decreased 5-HT transmission. J Neurosci 26: 8955–64.CrossRefGoogle ScholarPubMed
Johnson, D A, Grant, E J, Ingram, C D, Gartside, S E (2007). Glucocorticoid receptor antagonists hasten and augment neurochemical responses to a selective serotonin reuptake inhibitor antidepressant. Biol Psychiatry 62: 1228–35.CrossRefGoogle ScholarPubMed
Keck, M E, Sartori, S B, Welt, T, et al. (2005). Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behavior: effects of chronic paroxetine treatment. J Neurochem 92: 1170–9.CrossRefGoogle ScholarPubMed
Kehr, J (1993). A survey on quantitative microdialysis: theoretical models and practical implications. J Neurosci Meth 48: 251–61.CrossRefGoogle ScholarPubMed
Kihara, T, Ikeda, M (1995). Effects of duloxetine, a new serotonin and norepinephrine uptake inhibitor, on extracellular monoamine levels in rat frontal cortex. J Pharmacol Exp Ther 272: 177–83.Google ScholarPubMed
Kim, D K, Tolliver, T J, Huang, S J, et al. (2005). Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49: 798–810.CrossRefGoogle ScholarPubMed
Kitaichi, Y, Inoue, T, Nakagawa, S, Izumi, T, Koyama, T (2005). Effect of milnacipran on extracellular monoamine concentrations in the medial prefrontal cortex of rats pre-treated with lithium. Eur J Pharmacol 516: 219–26.CrossRefGoogle ScholarPubMed
Koed, K, Linnet, K (1997). The serotonin transporter messenger RNA level in rat brain is not regulated by antidepressants. Biol Psychiatry 42: 1177–80.CrossRefGoogle Scholar
Kovachich, G B, Aronson, C E, Brunswick, D J (1992). Effect of repeated administration of antidepressants on serotonin uptake sites in limbic and neocortical structures of rat brain determined by quantitative autoradiography. Neuropsychopharmacology 7: 317–24.Google ScholarPubMed
Kreiss, D S, Lucki, I (1995). Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J Pharmacol Exp Ther 274: 866–76.Google ScholarPubMed
Kuroda, Y, Watanabe, Y, McEwen, B S (1994). Tianeptine decreases both serotonin transporter mRNA and binding sites in rat brain. Eur J Pharmacol 268: R3–5.CrossRefGoogle ScholarPubMed
Lau, T, Horschitz, S, Berger, S, Bartsch, D, Schloss, P (2008). Antidepressant-induced internalization of the serotonin transporter in serotonergic neurons. Faseb J 22: 1702–14.CrossRefGoogle ScholarPubMed
Lesch, K P, Aulakh, C S, Wolozin, B L, Tolliver, T J, Hill, J L, Murphy, D L (1993). Regional brain expression of serotonin transporter mRNA and its regulation by reuptake inhibiting antidepressants. Brain Res Mol Brain Res 17: 31–5.CrossRefGoogle ScholarPubMed
Lesch, K P, Bengel, D, Heils, A, et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527–31.CrossRefGoogle ScholarPubMed
Li, Q, Ma, L, Innis, R B, et al. (2004). Pharmacological and genetic characterization of two selective serotonin transporter ligands: 2-[2-(dimethylaminomethylphenylthio)]-5-fluoromethylphenylamine (AFM) and 3-amino-4-[2-(dimethylaminomethyl-phenylthio)]benzonitrile (DASB). J Pharmacol Exp Ther 308: 481–6.CrossRefGoogle Scholar
Lifschytz, T, Gur, E, Lerer, B, Newman, M E (2004). Effects of triiodothyronine and fluoxetine on 5-HT1A and 5-HT1B autoreceptor activity in rat brain: regional differences. J Neurosci Methods 140: 133–9.CrossRefGoogle ScholarPubMed
Lim, J E, Papp, A, Pinsonneault, J, Sadee, W, Saffen, D (2006). Allelic expression of serotonin transporter (SERT) mRNA in human pons: lack of correlation with the polymorphism SERTLPR. Mol Psychiatry 11: 649–62.CrossRefGoogle ScholarPubMed
Lira, A, Zhou, M, Castanon, N, et al. (2003). Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54: 960–71.CrossRefGoogle ScholarPubMed
Lisboa, S F, Oliveira, P E, Costa, L C, Venancio, E J, Moreira, E G (2007). Behavioral evaluation of male and female mice pups exposed to fluoxetine during pregnancy and lactation. Pharmacology 80: 49–56.CrossRefGoogle ScholarPubMed
Little, K Y, McLaughlin, D P, Zhang, L, et al. (1998). Cocaine, ethanol, and genotype effects on human midbrain serotonin transporter binding sites and mRNA levels. Am J Psychiatry 155: 207–13.Google ScholarPubMed
Lonnroth, P, Jansson, P A, Smith, U (1987). A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 253: E228–31.Google ScholarPubMed
Lopez, J F, Chalmers, D T, Vazquez, D M, Watson, S J, Akil, H (1994). Serotonin transporter mRNA in rat brain is regulated by classical antidepressants. Biol Psychiatry 35: 287–90.CrossRefGoogle ScholarPubMed
Luellen, B A, Bianco, L E, Schneider, L M, Andrews, A M (2007). Reduced brain-derived neurotrophic factor is associated with a loss of serotonergic innervation in the hippocampus of aging mice. Genes Brain Behav 6: 482–90.CrossRefGoogle ScholarPubMed
Luellen, B A, Szapacs, M E, Materese, C K, Andrews, A M (2006). The neurotoxin 2′-NH2-MPTP degenerates serotonin axons and evokes increases in hippocampal BDNF. Neuropharmacology 50: 297–308.CrossRefGoogle ScholarPubMed
Malagie, I, Deslandes, A, Gardier, A M (2000). Effects of acute and chronic tianeptine administration on serotonin outflow in rats: comparison with paroxetine by using in vivo microdialysis. Eur J Pharmacol 403: 55–65.CrossRefGoogle ScholarPubMed
Mamounas, L A, Altar, C A, Blue, M E, Kaplan, D R, Tessarollo, L, Lyons, W E (2000). BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci 20: 771–82.CrossRefGoogle Scholar
Mamounas, L A, Blue, M E, Siuciak, J A, Altar, C A (1995). Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 15: 7929–39.CrossRefGoogle ScholarPubMed
Mamounas, L A, Molliver, M E (1988). Evidence for dual serotonergic projections to neocortex: axons from the dorsal and median raphe nuclei are differentially vulnerable to the neurotoxin p-chloroamphetamine (PCA). Exp Neurol 102: 23–36.CrossRefGoogle Scholar
Mamounas, L A, Mullen, C A, O'Hearn, E, Molliver, M E (1991). Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol 314: 558–86.CrossRefGoogle ScholarPubMed
Mann, J J, Huang, Y Y, Underwood, M D, et al. (2000). A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch Gen Psychiatry 57: 729–38.CrossRefGoogle ScholarPubMed
Mathews, T A, Fedele, D E, Coppelli, F M, Avila, A M, Murphy, D L, Andrews, A M (2004). Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140: 169–81.CrossRefGoogle Scholar
Melzacka, M, Rurak, A, Adamus, A, Daniel, W (1984). Distribution of citalopram in the blood serum and in the central nervous system of rats after single and multiple dosage. Pol J Pharmacol Pharm 36: 675–82.Google ScholarPubMed
Mirmiran, M, Poll, N E, Corner, M A, Oyen, H G, Bour, H L (1981). Suppression of active sleep by chronic treatment with chlorimipramine during early postnatal development: effects upon adult sleep and behavior in the rat. Brain Res 204: 129–46.CrossRefGoogle ScholarPubMed
Mirza, N R, Nielsen, E O, Troelsen, K B (2007). Serotonin transporter density and anxiolytic-like effects of antidepressants in mice. Prog Neuropsychopharmacol Biol Psychiatry 31: 858–66.CrossRefGoogle ScholarPubMed
Mitchell, S N, Greenslade, R G, Cooper, J (2001). LY393558, a 5-hydroxytryptamine reuptake inhibitor and 5-HT(1B/1D) receptor antagonist: effects on extracellular levels of 5-hydroxytryptamine in the guinea pig and rat. Eur J Pharmacol 432: 19–27.CrossRefGoogle ScholarPubMed
Montanez, S, Owens, W A, Gould, G G, Murphy, D L, Daws, L C (2003). Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J Neurochem 86: 210–9.CrossRefGoogle ScholarPubMed
Moret, C, Briley, M (1996). Effects of acute and repeated administration of citalopram on extracellular levels of serotonin in rat brain. Eur J Pharmacol 295: 189–97.CrossRefGoogle ScholarPubMed
Murphy, D L, Lerner, A, Rudnick, G, Lesch, K P (2004). Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 4: 109–23.CrossRefGoogle ScholarPubMed
Nakayama, K, Katsu, H, Ando, T, Nakajo, R (2003). Possible alteration of tryptophan metabolism following repeated administration of sertraline in the rat brain. Brain Res Bull 59: 293–7.CrossRefGoogle ScholarPubMed
Neumaier, J F, Root, D C, Hamblin, M W (1996). Chronic fluoxetine reduces serotonin transporter mRNA and 5-HT1B mRNA in a sequential manner in the rat dorsal raphe nucleus. Neuropsychopharmacology 15: 515–22.CrossRefGoogle Scholar
Neumeister, A, Hu, X Z, Luckenbaugh, D A, et al. (2006). Differential effects of 5-HTTLPR genotypes on the behavioral and neural responses to tryptophan depletion in patients with major depression and controls. Arch Gen Psychiatry 63: 978–86.CrossRefGoogle ScholarPubMed
Neumeister, A, Konstantinidis, A, Stastny, J, et al. (2002). Association between serotonin transporter gene promoter polymorphism (5HTTLPR) and behavioral responses to tryptophan depletion in healthy women with and without family history of depression. Arch Gen Psychiatry 59: 613–20.CrossRefGoogle ScholarPubMed
Newman, M E, Gur, E, Dremencov, E, Garcia, F, Lerer, B, Kar, L D (2000). Chronic clomipramine alters presynaptic 5-HT(1B) and postsynaptic 5-HT(1A) receptor sensitivity in rat hypothalamus and hippocampus, respectively. Neuropharmacology 39: 2309–17.CrossRefGoogle Scholar
Newman, M E, Shalom, G, Ran, A, Gur, E, Kar, L D (2004). Chronic fluoxetine-induced desensitization of 5-HT1A and 5-HT1B autoreceptors: regional differences and effects of WAY-100635. Eur J Pharmacol 486: 25–30.CrossRefGoogle ScholarPubMed
Numis, A L, Unger, E L, Sheridan, D L, Chisnell, A C, Andrews, A M (2004). The role of membrane and vesicular monoamine transporters in the neurotoxic and hypothermic effects of 1-methyl-4-(2′-aminophenyl)-1,2,3,6-tetrahydropyridine (2′-NH(2)-MPTP). Mol Pharmacol 66: 718–27.Google Scholar
Olson Cosford, R J, Vinson, A P, Kukoyi, S, Justice, J B (1996). Quantitative microdialysis of serotonin and norepinephrine: pharmacological influences on in vivo extraction fraction. J Neurosci Meth 68: 39–47.CrossRefGoogle Scholar
Owen, J C, Whitton, P S (2005). Effects of amantadine and budipine on antidepressant drug-evoked changes in extracellular 5-HT in the frontal cortex of freely moving rats. Br J Pharmacol 145: 587–92.CrossRefGoogle ScholarPubMed
Owen, J C, Whitton, P S (2006). Chronic treatment with antidepressant drugs reversibly alters NMDA mediated regulation of extracellular 5-HT in rat frontal cortex. Brain Res Bull 70: 62–7.CrossRefGoogle ScholarPubMed
Page, M E, Lucki, I (2002). Effects of acute and chronic reboxetine treatment on stress-induced monoamine efflux in the rat frontal cortex. Neuropsychopharmacology 27: 237–47.CrossRefGoogle ScholarPubMed
Parsey, R V, Hastings, R S, Oquendo, M A, et al. (2006a). Effect of a triallelic functional polymorphism of the serotonin-transporter-linked promoter region on expression of serotonin transporter in the human brain. Am J Psychiatry 163: 48–51.CrossRefGoogle ScholarPubMed
Parsey, RV, Hastings, R S, Oquendo, M A (2006b). Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 163: 52–8.CrossRefGoogle ScholarPubMed
Parsons, L H, Justice, J B (1994). Quantitative approaches to in vivo brain microdialysis. Crit Rev Neurobiol 8: 189–220.Google ScholarPubMed
Perez, X A, Andrews, A M (2005). Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice. Anal Chem 77: 818–26.CrossRefGoogle ScholarPubMed
Perez, X A, Bianco, L E, Andrews, A M (2006). Filtration disrupts synaptosomes during radiochemical analysis of serotonin uptake: comparison with chronoamperometry in SERT knockout mice. J Neurosci Meth 154: 245–55.CrossRefGoogle ScholarPubMed
Persico, A M, Baldi, A, Dell'Acqua, M L, et al. (2003). Reduced programmed cell death in brains of serotonin transporter knockout mice. Neuroreport 14: 341–4.CrossRefGoogle ScholarPubMed
Persico, A M, Mengual, E, Moessner, R, et al. (2001). Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 21: 6862–73.CrossRefGoogle Scholar
Pezawas, L, Meyer-Lindenberg, A, Drabant, E M, et al. (2005). 5-HTTLPR polymorphism impacts human cingulate–amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8: 828–34.CrossRefGoogle Scholar
Pineyro, G, Blier, P, Dennis, T, Montigny, C (1994). Desensitization of the neuronal 5-HT carrier following its long-term blockade. J Neurosci 14: 3036–47.CrossRefGoogle ScholarPubMed
Popa, D, Lena, C, Alexandre, C, Adrien, J (2008). Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior. J Neurosci 28: 3546–54.CrossRefGoogle Scholar
Qian, Y, Galli, A, Ramamoorthy, S, Risso, S, DeFelice, L J, Blakely, R D (1997). Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci 17: 45–57.CrossRefGoogle ScholarPubMed
Ramamoorthy, S, Blakely, R D (1999). Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285: 763–6.CrossRefGoogle ScholarPubMed
Ramamoorthy, S, Giovanetti, E, Qian, Y, Blakely, R D (1998). Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J Biol Chem 273: 2458–66.CrossRefGoogle ScholarPubMed
Ravary, A, Muzerelle, A, Darmon, M, et al. (2001). Abnormal trafficking and subcellular localization of an N-terminally truncated serotonin transporter protein. Eur J Neurosci 13: 1349–62.CrossRefGoogle ScholarPubMed
Rebsam, A, Seif, I, Gaspar, P (2002). Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 22: 8541–52.CrossRefGoogle ScholarPubMed
Ren-Patterson, R F, Cochran, L W, Holmes, A, Lesch, K P, Lu, B, Murphy, D L (2006). Gender-dependent modulation of brain monoamines and anxiety-like behaviors in mice with genetic serotonin transporter and BDNF deficiencies. Cell Mol Neurobiol26: 755–80.CrossRefGoogle ScholarPubMed
Rossi, D V, Burke, T F, McCasland, M, Hensler, J G (2008). Serotonin-1A receptor function in the dorsal raphe nucleus following chronic administration of the selective serotonin reuptake inhibitor sertraline. J Neurochem 105: 1091–9.CrossRefGoogle ScholarPubMed
Rutter, J J, Gundlah, C, Auerbach, S B (1994). Increase in extracellular serotonin produced by uptake inhibitors is enhanced after chronic treatment with fluoxetine. Neurosci Lett 171: 183–6.CrossRefGoogle ScholarPubMed
Sacchetti, G, Bernini, M, Bianchetti, A, Parini, S, Invernizzi, R W, Samanin, R (1999). Studies on the acute and chronic effects of reboxetine on extracellular noradrenaline and other monoamines in the rat brain. Br J Pharmacol 128: 1332–8.CrossRefGoogle ScholarPubMed
Salichon, N, Gaspar, P, Upton, A L, et al. (2001). Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase A and 5-ht transporter knock-out mice. J Neurosci 21: 884–96.CrossRefGoogle ScholarPubMed
Sayer, T J, Hannon, S D, Redfern, P H, Martin, K F (1999). Diurnal variation in 5-HT1B autoreceptor function in the anterior hypothalamus in vivo: effect of chronic antidepressant drug treatment. Br J Pharmacol 126: 1777–84.CrossRefGoogle ScholarPubMed
Schinka, J A, Busch, R M, Robichaux-Keene, N (2004). A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Mol Psychiatry 9: 197–202.CrossRefGoogle ScholarPubMed
Schmitt, A, Mossner, R, Gossmann, A, et al. (2003). Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. J Neurosci Res 71: 701–9.CrossRefGoogle ScholarPubMed
Sen, S, Burmeister, M, Ghosh, D (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am J Med Genet 127B: 85–9.CrossRefGoogle ScholarPubMed
Shen, H W, Hagino, Y, Kobayashi, H, et al. (2004). Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29: 1790–9.CrossRefGoogle ScholarPubMed
Sora, I, Hall, F S, Andrews, A M, et al. (2001). Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci USA 98: 5300–5.CrossRefGoogle ScholarPubMed
Spurlock, G, Buckland, P, O'Donovan, M, McGuffin, P (1994). Lack of effect of antidepressant drugs on the levels of mRNAs encoding serotonergic receptors, synthetic enzymes and 5HT transporter. Neuropharmacology 33: 433–40.CrossRefGoogle ScholarPubMed
Stuart, J N, Hummon, A B, Sweedler, J V (2004). The chemistry of thought: neurotransmitters in the brain. Anal Chem 76: 121A–128A.CrossRefGoogle Scholar
Swan, M C, Najlerahim, A R, Bennett, J P (1997). Expression of serotonin transporter mRNA in rat brain: presence in neuronal and non-neuronal cells and effect of paroxetine. J Chem Neuroanat 13: 71–6.CrossRefGoogle ScholarPubMed
Szabo, S T, Montigny, C, Blier, P (1999). Modulation of noradrenergic neuronal firing by selective serotonin reuptake blockers. Br J Pharmacol 126: 568–71.CrossRefGoogle ScholarPubMed
Tachibana, K, Matsumoto, M, Koseki, H, et al. (2006). Electrophysiological and neurochemical characterization of the effect of repeated treatment with milnacipran on the rat serotonergic and noradrenergic systems. J Psychopharmacol 20: 562–9.CrossRefGoogle ScholarPubMed
Tjurmina, O A, Armando, I, Saavedra, J M, Goldstein, D S, Murphy, D L (2002). Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143: 4520–6.CrossRefGoogle ScholarPubMed
Trigo, J M, Renoir, T, Lanfumey, L, et al. (2007). 3,4-Methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice. Biol Psychiatry62: 669–79.CrossRefGoogle ScholarPubMed
Velazquez-Moctezuma, J, Diaz Ruiz, O (1992). Neonatal treatment with clomipramine increased immobility in the forced swim test: an attribute of animal models of depression. Pharmacol Biochem Behav 42: 737–9.CrossRefGoogle ScholarPubMed
Vitalis, T, Cases, O, Callebert, J, et al. (1998). Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J Comp Neurol 393: 169–84.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Vogel, G, Neill, D, Hagler, M, Kors, D (1990). A new animal model of endogenous depression: a summary of present findings. Neurosci Biobehav Rev 14: 85–91.CrossRefGoogle ScholarPubMed
Watanabe, Y, Sakai, R R, McEwen, B S, Mendelson, S (1993). Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res 615: 87–94.CrossRefGoogle ScholarPubMed
Wegener, G, Bandpey, Z, Heiberg, I L, Mork, A, Rosenberg, R (2003). Increased extracellular serotonin level in rat hippocampus induced by chronic citalopram is augmented by subchronic lithium: neurochemical and behavioral studies in the rat. Psychopharmacology (Berl) 166: 188–94.CrossRefGoogle ScholarPubMed
Wegerer, V, Moll, G H, Bagli, M, Rothenberger, A, Ruther, E, Huether, G (1999). Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life. J Child Adolesc Psychopharmacol 9: 13–24; discussion 25–6.CrossRefGoogle ScholarPubMed
Wendland, J R, Martin, B J, Kruse, M R, Lesch, K P, Murphy, D L (2006). Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Mol Psychiatry 11: 224–6.CrossRefGoogle ScholarPubMed
Whittington, R A, Virag, L (2006). Isoflurane decreases extracellular serotonin in the mouse hippocampus. Anesth Analg 103: 92–8, table of contents.CrossRefGoogle ScholarPubMed
Wightman, R M (2006). Detection technologies. Probing cellular chemistry in biological systems with microelectrodes. Science 311: 1570–4.CrossRefGoogle ScholarPubMed
Wikell, C, Apelqvist, G, Hjorth, S, Kullingsjo, J, Bergqvist, P B, Bengtsson, F (2002). Effects on drug disposition, brain monoamines and behavior after chronic treatment with the antidepressant venlafaxine in rats with experimental hepatic encephalopathy. Eur Neuropsychopharmacol 12: 327–36.CrossRefGoogle ScholarPubMed
Williams, S M, Bryan-Lluka, L J, Pow, D V (2005). Quantitative analysis of immunolabeling for serotonin and for glutamate transporters after administration of imipramine and citalopram. Brain Res 1042: 224–32.CrossRefGoogle ScholarPubMed
Zalsman, G, Huang, Y Y, Oquendo, M A, et al. (2006). Association of a triallelic serotonin transporter gene promoter region (5-HTTLPR) polymorphism with stressful life events and severity of depression. Am J Psychiatry 163: 1588–93.CrossRefGoogle ScholarPubMed
Zhao, S, Edwards, J, Carroll, J, et al. (2006). Insertion mutation at the C-terminus of the serotonin transporter disrupts brain serotonin function and emotion-related behaviors in mice. Neuroscience 140: 321–34.CrossRefGoogle ScholarPubMed
Zhou, F C, Lesch, K P, Murphy, D L (2002). Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res 942: 109–19.CrossRefGoogle ScholarPubMed
Zhou, L, Huang, K X, Kecojevic, A, Welsh, A M, Koliatsos, V E (2006). Evidence that serotonin reuptake modulators increase the density of serotonin innervation in the forebrain. J Neurochem 96: 396–406.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×