Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T00:15:51.463Z Has data issue: false hasContentIssue false

17 - Spiders – Hints for Testing Cognition and Learning in Jumping Spiders

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

Jumping spiders (Araneae, Family Salticidae) are an appealing group for the study of learning and cognition because of their alert, active behaviour and reliance on visual information that is easy to experimentally manipulate. In this chapter, we describe the typical morphology, behaviour, and ecology of jumping spiders, with an emphasis on the influence of these characteristics on study design. Particularly important is the unusual visual system of jumping spiders: the secondary eyes are particularly attuned to motion, and the visual field almost completely surrounds the spider, meaning that special care needs to be taken to avoid distracting spiders in behavioural tests. Jumping spiders also incorporate other sensory modalities into their decision making, including vibration, chemical cues, and sound. Practical techniques for marking and following spiders in the field, designing experimental arenas in the laboratory, and incorporating video presentations of stimuli will be provided. We will also offer cautionary notes about how even seemingly subtle differences in design can profoundly affect the success of experiments.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 381 - 400
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

DeVoe, R. D. (1975). Ultraviolet and green receptors in principal eyes of jumping spiders. Journal of General Physiology, 66, 193207.CrossRefGoogle Scholar
Gilbert, C. (1997). Visual control of cursorial prey pursuit by tiger beetles (Cicindelidae). Journal of Comparative Physiology A, 181, 217230.CrossRefGoogle Scholar
Layne, J. E., Chen, P. W., and Gilbert, C. (2006). The role of target elevation in prey selection by tiger beetles (Carabidae: Cicindela spp.). Journal of Experimental Biology, 209, 42954303.CrossRefGoogle ScholarPubMed
Perkins, M. Q., and Gilbert, C. (2016). Spatial cognition in jumping spiders: assessment of path length to prey and vantage point. Denver Museum of Nature & Science Reports, 3, 92.Google Scholar
van Praagh, J. P. (1972). Towards a contolled-environment room suitable for normal colony life of honeybees 1. Description and general observations. Journal of Apicultural Research, 11, 7787.CrossRefGoogle Scholar
von Frisch, K. (1967). The dance language and orientation of bees. Cambridge, MA: Harvard University Press.Google Scholar
Walker, M. M., Baird, D. L., and Bitterman, M. E. (1989). Failure of stationary but not of flying honeybees (Apis mellifera) to respond to magnetic field stimuli. Journal of Comparative Psychology, 103, 6269.CrossRefGoogle Scholar

References

Carducci, J. P., and Jakob, E. M. (2000). Rearing environment affects behaviour of jumping spiders. Animal Behaviour, 59, 3946.CrossRefGoogle ScholarPubMed
Cross, F. R., and Jackson, R. R. (2016). The execution of planned detours by spider-eating predators. Journal of the Experimental Analysis of Behavior, 105, 194210.CrossRefGoogle ScholarPubMed
Hill, D. E. (1979). Orientation by jumping spiders of the genus Phidippus (Araneae: Salticidae) during the pursuit of prey. Behavioral Ecology and Sociobiology, 5, 301322.CrossRefGoogle Scholar
Jackson, R. R., and Cross, F. R. (2011). Spider cognition. Advances in Insect Physiology, 41, 115174.CrossRefGoogle Scholar
Jackson, R. R., Pollard, S. D., Li, D., and Fijn, N. (2002). Interpopulation variation in the risk-related decisions of Portia labiata, an araneophagic jumping spider (Araneae, Salticidae), during predatory sequences with spitting spiders. Animal Cognition, 5, 215223.CrossRefGoogle ScholarPubMed
Su, K. F. Y., Meier, R., Jackson, R. R., Harland, D. P., and Li, D. (2007). Convergent evolution of eye ultrastructure and divergent evolution of vision-mediated predatory behaviour in jumping spiders. Journal of Evolutionary Biology, 20, 14781489.CrossRefGoogle ScholarPubMed
Tarsitano, M. S., and Jackson, R. R. (1997). Araneophagic jumping spiders discriminate between detour routes that do and do not lead to prey. Animal Behaviour, 53, 257266.CrossRefGoogle Scholar

References

Baker, L. (2007). Effect of corridors on the movement behavior of the jumping spider Phidippus princeps (Araneae, Salticidae). Canadian Journal of Zoology, 85, 802808.CrossRefGoogle Scholar
Baker, L., Kelty, E. C., and Jakob, E. M. (2009). The effect of visual features on jumping spider movements across gaps. Journal of Insect Behavior, 22, 350361.CrossRefGoogle Scholar
Bednarski, J. V., Taylor, P., and Jakob, E. M. (2012). Optical cues used in predation by jumping spiders, Phidippus audax (Araneae, Salticidae). Animal Behaviour, 84, 12211227.CrossRefGoogle Scholar
Canavesi, C., Long, S., Fantone, D., Jakob, E. M., and Jackson, R. R. (2011). Design of a retinal tracking system for jumping spiders. Proceedings of SPIE, 8129, 81290918129098.Google Scholar
Carducci, J. P., and Jakob, E. M. (2000). Rearing environment affects behaviour of jumping spiders. Animal Behaviour, 59, 3946.CrossRefGoogle ScholarPubMed
Chang, C. C., Ng, P. J., and Li, D. (2017). Aggressive jumping spiders make quicker decisions for preferred prey but not at the cost of accuracy. Behavioral Ecology, 28, 479484.Google Scholar
Clark, D. L., and Uetz, G. W. (1990). Video image recognition by the jumping spider, Maevia inclemens (Araneae: Salticidae). Animal Behaviour, 40, 884890.CrossRefGoogle Scholar
Clark, D. L., and Uetz, G. W. (1992). Morph-independent mate selection in a dimorphic jumping spider: demonstration of movement bias in female choice using video-controlled courtship behaviour. Animal Behaviour, 43, 247254.CrossRefGoogle Scholar
Clark, R. J., Jackson, R. R., and Cutler, B. (2000). Chemical cues from ants influence predatory behavior in Habrocestum pulex, an ant-eating jumping spider (Araneae, Salticidae). Journal of Arachnology, 28, 309318.CrossRefGoogle Scholar
Cross, F. R. (2016). Discrimination of draglines from potential mates by Evarcha culicivora, an East African jumping spider. New Zealand Journal of Zoology, 43, 8495.CrossRefGoogle Scholar
Cross, F. R., and Jackson, R. R. (2006). From eight-legged automatons to thinking spiders. In Diversity of cognition (pp. 188215). Kyoto: Kyoto University Academic Press.Google Scholar
Cross, F. R., and Jackson, R. R. (2009). Cross-modality priming of visual and olfactory selective attention by a spider that feeds indirectly on vertebrate blood. Journal of Experimental Biology, 212, 18691875.CrossRefGoogle ScholarPubMed
Cross, F. R., and Jackson, R. R. (2015). Solving a novel confinement problem by spartaeine salticids that are predisposed to solve problems in the context of predation. Animal Cognition, 18, 509515.CrossRefGoogle ScholarPubMed
Cross, F. R., and Jackson, R. R. (2016). The execution of planned detours by spider-eating predators. Journal of the Experimental Analysis of Behavior, 105, 194210.CrossRefGoogle ScholarPubMed
Cross, F. R., and Jackson, R. R. (2017). Representation of different exact numbers of prey by a spider-eating predator. Interface Focus, 7, 20160035.CrossRefGoogle ScholarPubMed
Cross, F. R., Jackson, R. R., and Pollard, S. D. (2007). Male and female mate-choice decisions by Evarcha culicivora, an East African jumping spider. Ethology, 113, 901908.CrossRefGoogle Scholar
Dolev, Y., and Nelson, X. J. (2014). Innate pattern recognition and categorization in a jumping spider. PLoS ONE, 9(6), e97819.CrossRefGoogle Scholar
Edwards, G. B. (2004). Revision of the jumping spiders of the genus Phidippus (Araneae: Salticidae). Gainesville, FL: Department of Agriculture and Consumer Services.Google Scholar
Edwards, G. B., and Jackson, R. R. (1993). Use of prey-specific predatory behaviour by North American jumping spiders (Araneae, Salticidae) of the genus Phidippus. Journal of Zoology London, 229, 709716.CrossRefGoogle Scholar
Edwards, G. B., and Jackson, R. R. (1994). The role of experience in the development of predatory behaviour in Phidippus regius, a jumping spider (Araneae, Salticidae) from Florida. New Zealand Journal of Zoology, 21, 269227.CrossRefGoogle Scholar
Elias, D. O. (2003). Seismic signals in a courting male jumping spider (Araneae: Salticidae). Journal of Experimental Biology, 206, 40294039.CrossRefGoogle Scholar
Elias, D. O., Kasumovic, M. M., Punzalan, D., Andrade, M. C. B., and Mason, A. C. (2008). Assessment during aggressive contests between male jumping spiders. Animal Behaviour, 76, 901910.CrossRefGoogle ScholarPubMed
Elias, D. O., Maddison, W. P., Peckmezian, C., Girard, M. B., and Mason, A. C. (2012). Orchestrating the score: complex multimodal courtship in the Habronattus coecatus group of Habronattus jumping spiders (Araneae: Salticidae). Biological Journal of the Linnean Society, 105, 522547.CrossRefGoogle Scholar
Foelix, R. (2014). Biology of spiders. New York, NY: Oxford University Press.Google Scholar
Forster, L. M. (1979). Visual mechanisms of hunting behavior in Trite planiceps, a jumping spider (Araneae, Salticidae). New Zealand Journal of Zoology, 6, 7993.CrossRefGoogle Scholar
Givens, R. P. (1978). Dimorphic foraging strategies of a salticid spider (Phidippus audax). Ecology, 59, 309321.CrossRefGoogle Scholar
Harland, D. P., Jackson, R. R., and Macnab, A. M. (1999). Distances at which jumping spiders (Araneae: Salticidae) distinguish between prey and conspecific rivals. Journal of Zoology, 247, 357364.CrossRefGoogle Scholar
Harland, D. P., Li, D., and Jackson, R. R. (2012). How jumping spiders see the world. In How animals see the world (pp. 133163). Oxford: Oxford University Press.Google Scholar
Hill, D. E. (1979). Orientation by jumping spiders of the genus Phidippus (Araneae, Salticidae) during the pursuit of prey. Behavioral Ecology and Sociobiology, 5, 301322.CrossRefGoogle Scholar
Hoefler, C. D. (2007). Male mate choice and size-assortative pairing in a jumping spider, Phidippus clarus. Animal Behaviour, 73, 943954.CrossRefGoogle Scholar
Hoefler, C. D., and Jakob, E. M. (2006). Jumping spiders in space: movement patterns, nest site fidelity and the use of beacons. Animal Behaviour, 71, 109116.CrossRefGoogle Scholar
Jackson, R. R., and Cross, F. R. (2011). Spider cognition. Advances in Insect Physiology, 41, 115174.CrossRefGoogle Scholar
Jackson, R. R., and Li, D. Q. (2004). One-encounter search-image formation by araneophagic spiders. Animal Cognition, 7, 247254.CrossRefGoogle ScholarPubMed
Jackson, R. R., and Tarsitano, M. S. (1993). Responses of jumping spiders to motionless prey. Bulletin of the British Arachnological Society, 9, 105109.Google Scholar
Jackson, R. R., Carter, C. M., and Tarsitano, M. S. (2001). Trial-and-error solving of a confinement problem by a jumping spider, Portia fimbriata. Behaviour, 138, 12151234.CrossRefGoogle Scholar
Jackson, R. R., Clark, R. J., and Harland, D. P. (2002). Behavioural and cognitive influences of kairomones on an araneophagic jumping spider. Behaviour, 139, 749775.CrossRefGoogle Scholar
Jackson, R. R., Nelson, X. J., and Sune, G. O. (2005). A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. Proceedings of the National Academy of Sciences, 102, 1515515160.CrossRefGoogle ScholarPubMed
Jakob, E. M., and Long, S. M. (2016). How (not) to train your spider: successful and unsuccessful methods for studying learning. New Zealand Journal of Zoology, 43, 112126.CrossRefGoogle Scholar
Jakob, E. M., Skow, C. D., Popson Haberman, M., and Plourde, A. (2007). Jumping spiders associate food with color cues in a T-maze. Journal of Arachnology, 35, 487492.CrossRefGoogle Scholar
Jakob, E. M., Skow, C. D., and Long, S. M. (2011). Plasticity, learning, and cognition. In Spider behaviour: flexibility and versatility (pp. 307347). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Japyassú, H. F., and Laland, K. N. (2017). Extended spider cognition. Animal Cognition, 20, 375395.CrossRefGoogle ScholarPubMed
Kasumovic, M. M., Elias, D. O., Sivalinghem, S., Mason, A. C., and Andrade, M. C. B. (2010). Examination of prior contest experience and the retention of winner and loser effects. Behavioral Ecology, 21, 404409.CrossRefGoogle ScholarPubMed
Land, M. F. (1969a). Movements of the retinae of jumping spiders (Salticidae, Dendryphantinae) in relation to visual optics. Journal of Experimental Biology, 51, 471493.CrossRefGoogle Scholar
Land, M. F. (1969b). Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. Journal of Experimental Biology, 51, 443470.CrossRefGoogle ScholarPubMed
Land, M. F. (1985). The morphology and optics of spider eyes. In Neurobiology of Arachnids (pp. 5378). Berlin: Springer.CrossRefGoogle Scholar
Land, M. F., and Nilsson, D. E. (2012). Animal eyes. Oxford: Oxford University Press.CrossRefGoogle Scholar
Li, D. Q., Jackson, R. R., and Harland, D. P. (1999). Prey-capture techniques and prey preferences of Aelurillus aeruginosus, A. cognatus, and A. kochi, ant-eating jumping spiders (Araneae: Salticidae) from Israel. Israel Journal of Zoology, 45, 341359.Google Scholar
Liedtke, J., and Schneider, J. M. (2014). Association and reversal learning abilities in a jumping spider. Behavioral Processes, 103, 192198.CrossRefGoogle Scholar
Lim, M. L. M., and Li, D. Q. (2006). Behavioural evidence of UV sensitivity in jumping spiders (Araneae: Salticidae). Journal of Comparative Physiology A, 192, 871878.CrossRefGoogle ScholarPubMed
Long, S. M., Lewis, S., Jean-Louis, L., Ramos, G., Richmond, J., and Jakob, E. M. (2012). Firefly flashing and jumping spider predation. Animal Behaviour, 83, 8186.CrossRefGoogle Scholar
Long, S. M., Leonard, A., Carey, A., and Jakob, E. M. (2015). Vibration as an effective stimulus for aversive conditioning in jumping spiders. Journal of Arachnology, 43, 111114.CrossRefGoogle Scholar
Maddison, W. P. (2015). A phylogenetic classification of jumping spiders (Araneae: Salticidae). Journal of Arachnology, 43, 231292.CrossRefGoogle Scholar
McGinley, R. H., and Taylor, P. W. (2016). Video playback experiments support a role for visual assessment of opponent size in male–male contests of Servaea incana jumping spiders. Behavioral Ecology and Sociobiology, 70, 821829.CrossRefGoogle Scholar
McGinley, R. H., Prenter, J., and Taylor, P. W. (2013). Whole-organism performance in a jumping spider, Servaea incana (Araneae: Salticidae): links with morphology and between performance traits. Biological Journal of the Linnean Society, 110, 644657.CrossRefGoogle Scholar
Menda, G., Shamble, P. S., Nitzany, E. I., Golden, J. R., and Hoy, R. R. (2014). Visual perception in the brain of a jumping spider. Current Biology, 24, 25802585.CrossRefGoogle ScholarPubMed
Nagata, T., Koyanagi, M., Tsukamoto, H., et al. (2012). Depth perception from image defocus in a jumping spider. Science, 335, 469471.CrossRefGoogle Scholar
Nakamura, T., and Yamashita, S. (2000). Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology A, 186, 897901.CrossRefGoogle ScholarPubMed
Nelson, X. J., and Jackson, R. R. (2011). Flexibility in the foraging strategies of spiders. In Spider behaviour: flexibility and versatility (pp. 3156). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nelson, X. J., and Jackson, R. R. (2012a). Fine tuning of vision-based prey-choice decisions by a predator that targets malaria vectors. Journal of Arachnology, 40, 2333.CrossRefGoogle Scholar
Nelson, X. J., and Jackson, R. R. (2012b). The role of numerical competence in a specialized predatory strategy of an araneophagic spider. Animal Cognition, 15, 699710.CrossRefGoogle Scholar
Okuyama, T. (2007). Prey of two species of jumping spiders in the field. Applied Entomology and Zoology, 42, 663668.CrossRefGoogle Scholar
Oliveira, R. F., Rosenthal, G. G., Schlupp, I., et al. (2000). Considerations on the use of video playbacks as visual stimuli: the Lisbon workshop consensus. Acta Ethologica, 3, 6165.CrossRefGoogle Scholar
Parry, D. A., and Brown, R. H. J. (1959). The jumping mechanism of salticid spiders. Journal of Experimental Biology, 36, 654662.CrossRefGoogle Scholar
Peckmezian, T., and Taylor, P. W. (2015a). A virtual reality paradigm for the study of visually mediated behaviour and cognition in spiders. Animal Behaviour, 107, 8795.CrossRefGoogle Scholar
Peckmezian, T., and Taylor, P. W. (2015b). Electric shock for aversion training of jumping spiders: towards an arachnid model of avoidance learning. Behavioral Processes, 113, 99104.CrossRefGoogle ScholarPubMed
Peckmezian, T., and Taylor, P. W. (2017). Place avoidance learning and memory in a jumping spider. Animal Cognition, 20, 275284.CrossRefGoogle Scholar
Raška, J., Štys, P., and Exnerová, A. (2017). How variation in prey aposematic signals affects avoidance learning, generalization and memory of a salticid spider. Animal Behaviour, 130, 107117.CrossRefGoogle Scholar
Schmitz, A. (2004). Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). Journal of Comparative Physiology B, 174, 519526.Google ScholarPubMed
Schmitz, A. (2005). Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae). Journal of Experimental Biology, 208, 14011411.CrossRefGoogle ScholarPubMed
Schmitz, A., and Perry, S. F. (2000). Respiratory system of arachnids I: morphology of the respiratory system of Salticus scenicus and Euophrys lanigera (Arachnida, Araneae, Salticidae). Arthropod Structure and Development, 29, 312.CrossRefGoogle ScholarPubMed
Shamble, P. S., Menda, G., Golden, J. R., et al. (2016). Airborne acoustic perception by a jumping spider. Current Biology, 26, 29132920.CrossRefGoogle ScholarPubMed
Skow, C. D. (2007). Jumping spiders and aposematic prey: the role of contextual cues during avoidance learning. Amherst, MA: University of Massachusetts.Google Scholar
Skow, C. D., and Jakob, E. M. (2005). Jumping spiders attend to context during learned avoidance of aposematic prey. Behavioral Ecology, 17, 3440.CrossRefGoogle Scholar
Spano, L., Long, S. M., and Jakob, E. M. (2012). Secondary eyes mediate the response to looming objects in jumping spiders (Phidippus audax, Salticidae). Biology Letters, 8, 949951.CrossRefGoogle ScholarPubMed
Stankowich, T. (2009). When predators become prey: flight decisions in jumping spiders. Behavioral Ecology, 20, 318327.CrossRefGoogle Scholar
Strausfeld, N. J. (2012). Arthropod brains. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Su, K. F. Y., and Li, D. Q. (2006). Female-biased predation risk and its differential effect on the male and female courtship behaviour of jumping spiders. Animal Behaviour, 71, 531537.CrossRefGoogle Scholar
Su, K. F. Y., Meier, R., Jackson, R. R., Harland, D. P., and Li, D. (2007). Convergent evolution of eye ultrastructure and divergent evolution of vision-mediated predatory behaviour in jumping spiders. Journal of Evolutionary Biology, 20, 14781489.CrossRefGoogle ScholarPubMed
Tarsitano, M. S., and Andrew, R. (1999). Scanning and route selection in the jumping spider Portia labiata. Animal Behaviour, 58, 255265.CrossRefGoogle ScholarPubMed
Tarsitano, M. S., and Jackson, R. R. (1992). Influence of prey movement on the performance of simple detours by jumping spiders. Behaviour, 123, 106120.CrossRefGoogle Scholar
Tarsitano, M. S., and Jackson, R. R. (1994). Jumping spiders make predatory detours requiring movement away from prey. Behaviour, 131, 6573.CrossRefGoogle Scholar
Tarsitano, M. S., and Jackson, R. R. (1997). Araneophagic jumping spiders discriminate between detour routes that do and do not lead to prey. Animal Behaviour, 53, 257266.CrossRefGoogle Scholar
Taylor, B. B., and Peck, W. B. (1975). A comparison of northern and southern forms of Phidippus audax (Hentz) (Araneidae, Salticidae). Journal of Arachnology, 2, 8999.Google Scholar
Taylor, L. A., Clark, D. L., and McGraw, K. J. (2011). Condition dependence of male display coloration in a jumping spider (Habronattus pyrrithrix). Behavioral Ecology and Sociobiology, 65, 11331146.CrossRefGoogle Scholar
Taylor, L. A., Maier, E. B., Byrne, K. J., Amin, Z., and Morehouse, N. I. (2014). Colour use by tiny predators: jumping spiders show colour biases during foraging. Animal Behaviour, 90, 149157.CrossRefGoogle Scholar
Taylor, L. A., Amin, Z., Maier, E. B., Byrne, K. J., and Morehouse, N. I. (2016). Flexible color learning in an invertebrate predator: Habronattus jumping spiders can learn to prefer or avoid red during foraging. Behavioral Ecology, 27, 520529.CrossRefGoogle Scholar
Tedore, C., and Johnsen, S. (2013). Pheromones exert top-down effects on visual recognition in the jumping spider Lyssomanes viridis. Journal of Experimental Biology, 216, 17441756.Google ScholarPubMed
Tedore, C. and Johnsen, S. (2015). Visual mutual assessment of size in male Lyssomanes viridis jumping spider contests. Behavioral Ecology, 26, 510518.CrossRefGoogle Scholar
VanderSal, N. D., and Hebets, E. A. (2007). Cross-modal effects on learning: a seismic stimulus improves color discrimination learning in a jumping spider. Journal of Experimental Biology, 210, 36893695.CrossRefGoogle Scholar
Vickers, M. E., Robertson, M. W., Watson, C. R., and Wilcoxen, T. E. (2014). Scavenging throughout the life cycle of the jumping spider, Phidippus audax (Hentz) (Araneae: Salticidae). Journal of Arachnology, 42, 277283.CrossRefGoogle Scholar
Woo, K. L., and Rieucau, G. (2008). Considerations in video playback design: using optic flow analysis to examine motion characteristics of live and computer-generated animation sequences. Behavioral Processes, 78, 455463.CrossRefGoogle ScholarPubMed
World Spider Catalog (2017). Natural History Museum Bern, online at http://wsc.nmbe.ch, version 18.5 [accessed 21 September 2017].Google Scholar
Young, O. P., and Lockley, T. C. (1988). Dragonfly predation upon Phidippus audax (Araneae, Salticidae). Journal of Arachnology, 16, 121122.Google Scholar
Zurek, D. B., and Nelson, X. J. (2012a). Hyperacute motion detection by the lateral eyes of jumping spiders. Vision Research, 66, 2630.CrossRefGoogle ScholarPubMed
Zurek, D. B., and Nelson, X. J. (2012b). Saccadic tracking of targets mediated by the anterior-lateral eyes of jumping spiders. Journal of Comparative Physiology A, 198, 414417.CrossRefGoogle ScholarPubMed
Zurek, D. B., Taylor, A. J., Evans, C. S., and Nelson, X. J. (2010). The role of the anterior lateral eyes in the vision-based behaviour of jumping spiders. Journal of Experimental Biology, 213, 23722378.CrossRefGoogle ScholarPubMed
Zurek, D. B., Cronin, T. W., Taylor, L. A., Byrne, K., Sullivan, M. L. G., and Morehouse, N. I. (2015). Spectral filtering enables trichromatic vision in colorful jumping spiders. Current Biology, 25, 403404.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×