Published online by Cambridge University Press: 24 October 2009
Examples 6.1 illustrate what is meant by linear dependence of a list of vectors. More formally: given a list of vectors v1,…,vk of the same size (i.e. all are p × 1 matrices for the same p), a linear combination of these vectors is a sum of multiples of them, i.e. x1v1 + x2v2 + … + xkvk where x1, …, xk are any numbers. A list of vectors is said to be linearly dependent (abbreviated to LD) if there is some non-trivial linear combination of them which is equal to the zero vector. Of course, in a trivial way, we can always obtain the zero vector by taking all of the coefficients x1, …, xk to be 0. A non-trivial linear combination is one in which at least one of the coefficients is non-zero.
A list of vectors of the same size which is not linearly dependent is said to be linearly independent (abbreviated to LI).
Example 6.2 deals with the case of a list of two 2-vectors. A list of two non-zero 2-vectors is LD if and only if each is a multiple of the other. Example 6.3 deals with a list of three 2-vectors. Such a list is always LD. Why? Because a certain set of simultaneous equations must have a solution of a certain kind.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.