Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T12:33:24.423Z Has data issue: false hasContentIssue false

Chapter 45 - Hydrothermal Vents and Cold Seeps

from II - Marine Ecosystems and Habitats

Published online by Cambridge University Press:  18 May 2017

United Nations
Affiliation:
Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs
Get access

Summary

Inventory

Hydrothermal vents and cold seeps constitute energy hotspots on the seafloor that sustain some of the most unusual ecosystems on Earth. Occurring in diverse geological settings, these environments share high concentrations of reduced chemicals (e.g., methane, sulphide, hydrogen, iron II) that drive primary production by chemosynthetic microbes (Orcutt et al. 2011). Their biota are characterized by a high level of endemism with common specific lineages at the family, genus and even species level, as well as the prevalence of symbioses between invertebrates and bacteria (Dubilier et al., 2008; Kiel, 2009).

Hydrothermal vents are located at mid-ocean ridges, volcanic arcs and back-arc spreading centres or on volcanic hotspots (e.g., Hawaiian archipelago), where magmatic heat sources drive the hydrothermal circulation. Venting systems can also be located well away from spreading centres, where they are driven by exothermic, mineral-fluid reactions (Kelley, 2005) or remanent lithospheric heat (Wheat et al., 2004). Of the 521 vent fields known (as of 2009), 245 are visually confirmed, the other being inferred active by other cues such as tracer anomalies (e.g. temperature, particles, dissolved manganese or methane) in the water column (Beaulieu et al., 2013) (Figure 45.1).

Sediment-hosted seeps occur at both passive continental margins and subduction zones, where they are often supported by subsurface hydrocarbon reservoirs. The migration of hydrocarbon-rich seep fluids is driven by a variety of geophysical processes, such as plate subduction, salt diapirism, gravity compression or the dissociation of methane hydrates. The systematic survey of continental margins has revealed an increasing number of cold seeps worldwide (Foucher et al., 2009; Talukder, 2012). However, no recent global inventory of cold seeps is available.

Both vent and seep ecosystems are made up of a mosaic of habitats covering wide ranges of potential physico-chemical constraints for organisms (e.g., in temperature, salinity, pH, and oxygen, CO2, hydrogen sulphide, ammonia and other inorganic volatiles, hydrocarbon and metal contents) (Fisher et al., 2007; Levin and Sibuet, 2012; Takai and Nakamura, 2010). Some regions (e.g., Mariana Arc or Costa Rica margin) host both types of ecosystems, forming a continuum of habitats that supports species with affinities for vents or seeps (Watanabe et al., 2010; Levin et al., 2012). Habitats indirectly related to hydrothermal venting include inactive sulphide deposits and hydrothermal sediments (German and Von Damm, 2004).

Type
Chapter
Information
The First Global Integrated Marine Assessment
World Ocean Assessment I
, pp. 853 - 862
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D.K., McGillicuddy, D.J., Zamudio, L., Thurnherr, A.M., Liang, X., Rouxel, O., German, C.R., Mullineaux, L.S. (2011). Surface-Generated Mesoscale Eddies Transport Deep-Sea Products from Hydrothermal Vents. Science 332, 580–583. doi:10.1126/science.1201066.Google Scholar
Amend, J.P., Mccollom, T.M., Hentscher, M., Bach, W. (2011). Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochimica et Cosmochimica Acta 75 5736–5748.Google Scholar
Arrieta, J.M., Arnaud-Haond, S., Duarte, C.M., (2010). What lies underneath: Conserving the oceans' genetic resources. Proceedings of the National Academy of Sciences of the United States of America 107, 18318-18324.Google Scholar
Armstrong, C.W., Foley, N.S., Tinch, R., van den Hove, S. (2012). Services from the deep: Steps towards valuation of deep sea goods and services. Ecosystem Services 2, 2–13.Google Scholar
Bachraty, C., Legendre, P., Desbruyères, D. (2009). Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep Sea Research Part II: Oceanography Research Papers 56, 1371–1378. doi:10.1016/j.dsr.2009.01.009.Google Scholar
Baker, E.T. and German, C.R. (2004). On the global distribution of hydrothermal vent fields. In Mid-Ocean Ridges: Hydrothermal interactions between the lithosphere and oceans. Geophysical Monograph Series, Vol. 148, C.R., German, J., Lin, and L.M., Parson (eds.), AGU, 245-266.
Baker, M.C., Ramirez-Llodra, E.Z., Tyler, P.A., German, C.R., Boetius, A., Cordes, E.E., Dubilier, N., Fisher, C.R., Levin, L.A., Metaxas, A., Rowden, A.A., Santos, R.S., Shank, T.M., Van Dover, C.L., Young, C.M., Warén, A. (2010). Biogeography, Ecology, and Vulnerability of Chemosynthetic Ecosystems in the Deep Sea, in: McIntyre, A.D. (Ed.), Life in the World's Oceans. Wiley-Blackwell, Oxford, UK, 161–182
Beaulieu, S.E., Baker, E.T., German, C.R., Maffei, A. (2013). An authoritative global database for active submarine hydrothermal vent fields: Global vent database. Geochemistry Geophysics Geosystems 14, 4892–4905. doi:10.1002/2013GC004998Google Scholar
Beaulieu, S., Joyce, K., Cook, J. and Soule, S.A. (2015). Woods Hole Oceanographic Institution.
Bernardino, A.F., Levin, L.A., Thurber, A.R., Smith, C.R. (2012). Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE 7 (4), e33515.Google Scholar
Boetius, A., Wenzhöfer, F. (2013). Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience 6, 725–734. doi:10.1038/ngeo1926.Google Scholar
Boschen, R.E., Rowden, A.A., Clark, M.R., Gardner, J.P.A. (2013). Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean and Coastal Management 84, 54–67. doi:10.1016/j.ocecoaman.2013.07.005.Google Scholar
<B>CBD scientific criteria for ecologically or biologically significant areas (EBSAs) annex I, decision IX/20 (http://www.cbd.int/ebsa).
<B>CBD COP decision X/29 (2010). Marine and coastal biodiversity, para. 26.
Calado, H., Ng, K., Lopes, C., Paramio, L. (2011). Introducing a legal management instrument for offshore marine protected areas in the Azores—The Azores Marine Park. Environmental Science and Policy 14: 1175-1187.Google Scholar
Charlou, J.L., Donval, J.P., Konn, C., Ondreas, H., Fouquet, Y., Jean-Baptiste, P. and Fourre, E. (2010). High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on theMid AtlanticRidge. In Diversity of hydrothermal systems on slow-spreading ocean ridges, P.A., Rona et al. (Ed.), eds.): pp.265-296, AGU Monograph Series, Washington.
ChESSbase (CoML). Ocean Biogeographic Information System Publication. http://www.gbif.org/dataset/83b90d28-f762-11e1-a439-00145eb45e9a on 2015-05-06
Childress, J.J. and Fisher, C.R. (1992). The biology of hydrothermal vent animals: Physiology, biochemistry and autotrophic symbioses. Oceanography and Marine Biology 30: 337-441.Google Scholar
Childress, J.J. and Girguis, P.R. (2011). The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. Journal of Experimental Biology, 214: 312-325. doi:10.1242/jeb.049023.Google Scholar
Clark, M.R., Rowden, A.A., Schlacher, T.A., Guinotte, J., Dunstan, P.K., Williams, A., O'Hara, T.D., Watling, L., Niklitschek, E., Tsuchida, S. (2014). Identifying Ecologically or Biologically Significant Areas (EBSA): A systematic method and its application to seamounts in the South Pacific Ocean. Ocean and Coastal Management 91, 65–79. doi:10.1016/j.ocecoaman.2014.01.016.Google Scholar
Cordes, E.E., McGinley, M.P., Podowski, E.L., Becker, E.L., Lessard-Pilon, S., Viada, S.T., Fisher, C.R. (2008). Coral communities of the deep Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers 55, 777–787. doi:10.1016/j. dsr.2008.03.005.Google Scholar
Cordes, E.E., Bergquist, D.C., Fisher, C.R. (2009). Macro-Ecology of Gulf of Mexico Cold Seeps. Annual review of Marine Science. 1, 143–168.Google Scholar
Cordes, E.E., Cunha, M.R., Galéron, J., Mora, C., Olu-Le Roy, K., Sibuet, M., Van Gaever, S., Vanreusel, A., Levin, L.A. (2010). The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Marine Ecology 31, 51-65.Google Scholar
Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., van Andel, T.H. (1979). Submarine Thermal Springs on the Galápagos Rift, (1979). 203 Science 1073-1083.
Crist, D.T., Ausubel, J., Wagoner, P.E. (2010). First census of marine life 2010: highlights of a decade of discovery. A publication of the Census of Marine Life, Washington D.C.
Desbruyères, D., Biscoito, M., Caprais, J.-C., Colaço, A., Comtet, T., Crassous, P., Fouquet, Y., Khripounoff, A., Le Bris, N., Olu, K., Riso, R., Sarradin, P., Segonzac, M. and Vangriesheim, A. (2001). Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep Sea Research Part I 48:1,325–1,346.Google Scholar
Devey, C.W., Fisher, C.R., Scott, S., (2007). Responsible science at hydrothermal vents. Oceanography 20: 162-171.Google Scholar
Dick, G.J., Anantharaman, K., Baker, B.J., Li, M., Reed, D.C., Sheik, C.S., (2013). The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Frontiers in Microbiology 4. doi:10.3389/fmicb.2013.00124.Google Scholar
Dubilier, N., Bergin, C., Lott, C., (2008). Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Reviews Microbiology 6, 725–740.Google Scholar
Dunn, D.C., Ardron, J., Bax, N., Bernal, P., Cleary, J., Cresswell, I., Donnelly, B., Dunstan, P., Gjerde, K., Johnson, D., Kaschner, K., Lascelles, B., Rice, J., von Nordheim, H., Wood, L., Halpin, P.N., (2014). The Convention on Biological Diversity's Ecologically or Biologically Significant Areas: Origins, development, and current status. Marine Policy. doi:10.1016/j.marpol.2013.12.002.
Fisher, C.R., Takai, K. and Le Bris, N. (2007). Hydrothermal Vent ecosystem. Oceanography 20 (1) 14-23.Google Scholar
Fisher, C.R., Demopoulos, A.W.J., Cordes, E.E., Baums, I.B., White, H.K., Bourque, J.R., (2014). Coral communities as indicators of ecosystem-level impacts resulting from the Deepwater Horizon oil spill. Bioscience. 64: 796-807. doi: 10.1093/ biosci/biu129Google Scholar
Foucher, J.-P., Westbrook, G.K., Boetius, A., Ceramicola, S., Dupré, S., Mascle, J., Mienert, J., Pfannkuche, O., Pierre, C., Praeg, D. (2009) Structure and Drivers of Cold Seep Ecosystems. Oceanography, 22(1) :): 92-109. Doi: 10.5670/oceanog. 2009.11.Google Scholar
Gjerde, K.M., International Union for Conservation of Nature and Natural Resources, United Nations Environment Programme, (2006). Ecosystems and biodiversity in deep waters and high seas, UNEP regional seas report and studies. UNEP; IUCN, Nairobi, Kenya : [Switzerland]. ISBN: 92-807-2734-6.
German, C.R. and Von Damm, K.L. (2004). Hydrothermal Processes. in The oceans and marine geochemistry: Treatise on geochemistry, Vol. 6, ed. H., Elderfield. Elsevier, Amsterdam; Heidelberg.
German, C.R., Ramirez-Llodra, E., Baker, M.C., Tyler, P.A. and the ChEss Scientific Steering Committee. (2011). Deep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map. PLoS ONE 6: e23259. doi:10.1371/journal.pone.0023259Google Scholar
German, C.R., Legendre, L.L., Sander, S.G., Niquil, N., Luther, G.W., Bharati, L., Han, X., Le Bris, N. (2015). Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments. Earth and Planetary Science Letters 419, 143–153.Google Scholar
Goldberg, D.S., Takahashi, T. and Slagle, A.L. (2008). Carbon dioxide sequestration in deep-sea basalt. Proceedings of the National Academy of Sciences, 105(29), 9920-9925Google Scholar
Gjerde, K.M. (2006). International Union for Conservation of Nature and Natural Resources, United Nations Environment Programme. Ecosystems and biodiversity in deep waters and high seas, UNEP regional seas report and studies. UNEP; IUCN, Nairobi, Kenya : [Switzerland].
Glover, A.G, Gooday, A.J, Bailey, D.M, Billett, D.S.M., Chevaldonné, P.A., Colaco, A., Copley, J., Cuvelier, D., Desbruyères, D., Kalogeropoulou, K.V., Klages, M., Lampadariou, N., Lejeusne, C., Mestre, N.C., Paterson, G.L.J., Perez, T., Ruhl, H., Sarrazin, J., Soltwedel, T., Soto, E.H., Thatje, S., Tselepides, A., Van Gaever, S., and Vanreusel, A. (2010). Advances in Marine Biology, Vol. 58, p 1-79.
Gouvernement de Nouvelle Calédonie. Proposition pour un Parc Naturel de la Mer de Corail. http://www.affmar.gouv.nc/portal/page/portal/affmar/librairie/fichiers/26354258.PDF (27-04-15)
Hawkes, J.A., Connelly, D.P., Gledhill, M., Achterberg, E.P. (2013). The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems. Earth and Planetary Science Letters 375, 280–290.Google Scholar
<B>IMMS (2011). International Marine Minerals Society, Code for Environmental Management of Marine Mining. Revised version. http://www.immsoc.org/IMMS_downloads/2011_SEPT_16_IMMS_Code.pdf.
<B>IPCC (2005). Caldeira, K. and Akai, M. Ocean Storage. In: Bert, Metz, Ogunlade, Davidson, Heleen, de Coninck, Manuela, Loos and Leo, Meyer (Eds.) Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, UK. pp 431.
<B>ISA (2011). Environmental management of deep-sea chemosynthetic ecosystems: justification of and considerations for a spatially-based approach. International Seabed Authority Technical Report No. 9. ISA, Kingston, Jamaica, 78 pp.
Jobstvogt, N., Hanley, N., Hynes, S., Kenter, J., Witte, U., (2014). Twenty thousand sterling under the sea: Estimating the value of protecting deep-sea biodiversity. Ecological Economics 97, 10–19. doi:10.1016/j.ecolecon.2013.10.019.Google Scholar
Kiel, S. (ed.) (2009). The Vent and Seep Biota: Aspects from Microbes to Ecosystems, Topics in Geobiology 33, 1 DOI 10.1007/978-90-481-9572-5_1.Google Scholar
Kelley, D.S. (2005). A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 307, 1428–1434. doi:10.1126/science.1102556.Google Scholar
Le Bris, N. and Gaill, F. (2007). How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment? Reviews in Environmental Science and Biotechnology 6, 197–221. doi:10.1007/s11157-006-9112-1.Google Scholar
Le Bris, N. and Duperron, S. (2010). In: Chemosynthetic communities and biogeochemical energy pathways along the Mid-Atlantic Ridge: The case of Bathymodiolus azoricus. American Geophysical Union, Washington D.C. 188: 9. doi: 10.1029/2008GM000712.
Levin, L.A., (2005). Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology 43, 1-46.Google Scholar
Levin, L.A., Sibuet, M., Gooday, A.J., Smith, C.R., Vanreusel, A. (2010). The roles of habitat heterogeneity in generating and maintaining biodiversity on continental margins: an introduction. Marine Ecology 31 (1), 1-5.Google Scholar
Levin, L.A., Sibuet, M. (2012). Understanding Continental Margin Biodiversity: A New Imperative. Annual Review of Marine Science 4, 79–112. doi:10.1146/annurevmarine-120709-142714.Google Scholar
Levin, L.A., Orphan, V.J., Rouse, G.W., Rathburn, A.E., Ussler, W., Cook, G.S., Goffredi, S.K., Perez, E.M., Waren, A., Grupe, B.M., Chadwick, G., Strickrott, B., (2012). A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proceedings of the Royal Society of London B: Biological Sciences 279, 2580–2588. doi:10.1098/rspb.2012.0205.Google Scholar
Levin, L.A., Ziebis, W., Mendoza, G., Bertics, V.J., Washington, T., Gonzalez, J., Thurber, A.R., Ebbe, B., Lee, R.W. (2013). Ecological release and niche partitioning under stress: Lessons from dorvilleid polychaetes in sulfidic sediments at methane seeps. Deep Sea Research Part II: Topical Studies in Oceanography 92, 214-233.Google Scholar
McNutt, M.K., Rich, C., Crone, T.J., Guthrie, G.A., Hsieh, P.A., Ryerson, T.B., Savas, O. and Shaffer, F. (2012). Review of flow rate estimates of the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences 109 (50) 20260-20267.Google Scholar
Mills, S., Mullineaux, L., Beaulieu, S., Adams, D. (2013). Persistent effects of disturbance on larval patterns in the plankton after an eruption on the East Pacific Rise. Marine Ecology Progress Series. 491, 67–76. doi:10.3354/meps10463.Google Scholar
Ministry of Fisheries and Department of Conservation. (2008). Marine Protected Areas: Classification, Protection Standard and Implementation Guidelines. Ministry of Fisheries and Department of Conservation, Wellington, New Zealand. 54, p. http://www.fish.govt.nz/ennz/Environmental/Seabed+Protection+and+Research/Benthic+Protection+Areas.htm 27/04/15.
Moalic, Y., Desbruyeres, D., Duarte, C.M., Rozenfeld, A.F., Bachraty, C., Arnaud-Haond, S. (2012). Biogeography Revisited with Network Theory: Retracing the History of Hydrothermal Vent Communities. Systematic Biology 61, 127-137.Google Scholar
Montagna, P.A. et al., Baguley, J.G, Cooksey, C., Hartwell, I., Hyde, L.J., Hyland, J.L., Kalke, R.D., Kracker, L.M., Reuscher, M., Rhodes, A.C.E. (2013). Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout. PLoS ONE 8(8): e70540, doi:10.1371/ journal.pone.0070540.Google Scholar
New Zealand ENMS circular (2007). Electronic Net Monitoring Systems – Circular Issued Under Authority of the Fisheries (Benthic Protection Areas) Regulations 2007 (No. F419).
<B>NTL 2009-G40, Deepwater Benthic Communities NTL implemented January 27, 2010. http://www.bsee.gov/Regulations-and-Guidance/Notices-to-Lessees/2009/09-G40/ (27-04-15)
Ohara, Y., Reagan, M.K., Fujikura, K., Watanabe, H., Michibayashi, K., Ishii, T., Stern, R.J., Pujana, I., Martinez, F., Girard, G., Ribeiro, J., Brounce, M., Komori, N., Kino, M. (2012). A serpentinite-hosted ecosystem in the Southern Mariana Forearc. Proceedings of the National Academy of Sciences 109, 2831–2835. doi:10.1073/pnas.1112005109.Google Scholar
Orcutt, B.N., Sylvan, J.B., Knab, N.J., Edwards, K.J. (2011). Microbial Ecology of the Dark Ocean above, at, and below the Seafloor. Microbiology and Molecular Biology Reviews 75, 361–422. doi:10.1128/MMBR.00039-10Google Scholar
<B>OSPAR (2010). Background Document for Oceanic ridges with hydrothermal vents/ fields. Biodiversity Series (Publication No. 490/2010): 17 pp. OSPAR Commission. ISBN 978-1-907390-31-9.
<B>OSPAR (2014). OSPAR 14/21/1 Annex 16. OSPAR Recommendation 2014/11 on furthering the protection and conservation of hydrothermal vents/fields occurring on oceanic ridges in Region V of the OSPAR maritime area. 6pp. OSPAR Commission.
Paull, C.K. et al., (1984). Biological Communities at the Florida Escarpment Resemble Hydrothermal Vent Taxa, 226 Science 965-967Google Scholar
Ramirez-Llodra, E., Freitga, K., Blanco, M. and Baker, C. (2005). ChEssBase: an online information system on biodiversity and biogeography of deep-sea fauna from chemosynthetic ecosystems. Version 2. World Wide Web electronic publications,
Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C.R., Levin, L.A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy, B.E., Smith, C.R., Tittensor, D.P., Tyler, P.A., Vanreusel, A., Vecchione, M. (2010). Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences 7, 2851–2899. doi:10.5194/bg-7-2851-2010.Google Scholar
Ramirez-Llodra, E., Tyler, P.A., Baker, M.C., Bergstad, O.A., Clark, M.R., Escobar, E., Levin, L.A., Menot, L., Rowden, A.A., Smith, C.R., Van Dover, C.L., (2011). Man and the Last Great Wilderness: Human Impact on the Deep Sea. PLoS ONE 6, e22588. doi:10.1371/journal.pone.0022588.Google Scholar
Report of the Ad Hoc Open-ended Informal Working Group to study issues relating to the conservation and sustainable use of marine biological diversity beyond areas of national jurisdiction and Co-Chairs' summary of discussions. (2013).
<B>A/68/399. http://www.un.org/ga/search/view_doc.asp?symbol=A/68/399.
Rogers, A.D., Tyler, P.A., Connelly, D.P., Copley, J.T., James, R., Larter, R.D., Linse, K., Mills, R.A., Naveira Garabato, A., Pancost, R.D., Pearce, D.A., Polunin, N.V.C., German, C.R., Shank, T., Boersch-Supan, P.H., Alker, B.J., Aquilina, A., Bennett, S.A., Clarke, A. Dinley, R.J.J., Graham, A.G.C., Green, D.R.H., Hawkes, J.A., Hepburn, L., Hilario, A., Huvenne, V.A.I., Marsh, L., Ramirez-Llodra, E.,. Reid, W.D.K, Roterman, C.N., Sweeting, C.J., Thatje, S., Zwirglmaier, K. (2012). The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography. PLoS Biology 10(1): e1001234.Google Scholar
Ribeiro, M.C. (2010). The “Rainbow”: The First National Marine Protected Area Proposed Under the High Seas. International Journal of Marine and Coastal Law 25, 183–207. doi:10.1163/157180910X12665776638669.Google Scholar
Santos, R.S., Morato, T. and Barriga, F.J.A.S. (2012). Increasing Pressure at the Bottom of the Ocean [Chapter 5]: 69-81 [doi: 10.1007/978-94-007-1321-5_5]. In: A., Mendonça, A., Cunha & R., Chakrabarti (Eds.). Natural Resources, Sustainability and Humanity: A Comprehensive View. Springer: xvi+199 pp.
Shank, T.M., Fornari, D.J., Von Damm, K.L., Lilley, M.D., Haymon, R.M. and Lutz, R.A., (1998). Temporal and spatial patterns of biological community development at the nascent deep-sea hydrothermal vents (9°50'N, East Pacific Rise). Deep-Sea Research II, 45, 465-515.Google Scholar
Spiess, F.N., MacDonald, K.C., Atwater, T. et al., (1980). East Pacific Rise -hot springs and geophysical experiments. Science, 207, 1421-1433.Google Scholar
Tagliabue, A., Bopp, L., Dutay, J.-C., Bowie, A.R., Chever, F., Jean-Baptiste, P., Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G., Aumont, O., Gehlen, M., Jeandel, C. (2010). Hydrothermal contribution to the oceanic dissolved iron inventory. Nature Geoscience 3, 252–256. doi:10.1038/ngeo818.Google Scholar
Takai, K., Nakamura, K. (2010). Compositional, Physiological and Metabolic Variability in Microbial Communities Associated with Geochemically Diverse, Deep-Sea Hydrothermal Vent Fluids, in: Barton, L.L., Mandl, M., Loy, A. (Eds.), Geomicrobiology: Molecular and Environmental Perspective. Springer Netherlands, Dordrecht, 251–283
Takai, K., Nakamura, K. (2011). Archaeal diversity and community development in deep-sea hydrothermal vents. Current Opinion in Microbiology 14, 282–291. doi:10.1016/j.mib.2011.04.013.Google Scholar
Talukder, A.R. (2012). Review of submarine cold seep plumbing systems: leakage to seepage and venting: Seeps plumbing system. Terra Nova 24, 255–272.Google Scholar
Thornburg, C.C., Zabriskie, T.M. and McPhail, K.L. (2010). Deep-Sea Hydrothermal Vents: Potential Hot Spots for Natural Products Discovery? Journal of Natural Products, 73(3), 489-499.Google Scholar
Thomson, R.E., Gordon, R.L. and Dolling, A.G. (1991). An intense acoustic scattering layer at the top of a mid-ocean ridge hydrothermal plume. Journal of Geophysical Research 36: 4839-4844. dx.doi.org/10.1029/90JC02692.Google Scholar
Tunnicliffe, V., Embley, R.W., Holden, J.F., Butterfield, D.A., Massoth, G.J., and Juniper, S.K., (1997). Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 44(9), 1627-1644.Google Scholar
<B>UNEP/CBD/SBSTTA/13/INF/14 (2013). Report of the expert workshop on ecological criteria and biogeographic classification systems for marine areas in needs of protection.
<B>UNU-IAS Report (2005). Bioprospecting of Genetic Resources in the Deep Seabed: Scientific, Legal and Policy Aspects. Tokyo, UNU/IAS, 76 pages.
<B>USFWS (2012). Marianas Trench Marine National Monument Factsheet. Available at: http://www.fws.gov/marianastrenchmarinemonument/.
Van Dover, C.L., Smith, C.R., Ardron, J. Dunn, D., Gjerde, K., Levin, L., Smith, S., The Dinard Workshop Contributors. (2012). Designating networks of chemosynthetic ecosystem reserves in the deep sea. Marine Policy 36: 378-381.Google Scholar
Van Dover, C., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno-Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Morato, T., Pollard, E., Rogers, A., Warner, R. (2014). Ecological restoration in the deep sea: desiderata. Marine Policy 44: 98-106.Google Scholar
Vanreusel, A., De Groote, A., Gollner, S., Bright, M., (2010). Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review. PLoS ONE 5, e12449. doi:10.1371/journal.pone.0012449.Google Scholar
Watanabe, H., Fujikura, K., Kojima, S., Miyazaki, J.-I., Fujiwara, Y. (2010). Japan: Vents and Seeps in Close Proximity. In: Kiel, S. (Ed.). The Vent and Seep Biota. Springer Netherlands, Dordrecht, 379–401
Wheat, C.G., Mottl, M.J., Fisher, A.T., Kadko, D., Davis, E.E., and Baker, E., (2004). Heat flow through a basaltic outcrop on a sedimented young ridge flank. Geochemistry Geophysics Geosystems, doi:10.1029/2004GC000700.
Wu, J., Wells, M.L., Rember, R., (2011). Dissolved iron anomaly in the deep tropical– subtropical Pacific: Evidence for long-range transport of hydrothermal iron. Geochimica et Cosmochimica Acta 75, 460–468.Google Scholar
Wheeler, A.J. & Stadnitskaya, A. (2011). Benthic deep-sea carbonates: reefs and seeps. In: Heiko, Hüneke & Thierry, Mulder (eds). Deep-Sea Sediments. Amsterdam: Elsevier.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×