Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T14:35:54.323Z Has data issue: false hasContentIssue false

2 - Form and function in Evo Devo: historical and conceptual reflections

Published online by Cambridge University Press:  28 June 2009

Manfred D. Laubichler
Affiliation:
Arizona State University
Jane Maienschein
Affiliation:
Arizona State University
Get access

Summary

The success of grand historical narratives and conceptual reflections rests, in no small part, on the selection of their central characters and features. If, as in our case here, the focus is on the development and integration of those ideas that have shaped our understanding of the living world, it is hardly possible to think of one pair of concepts more appropriate to structure a longue durée narrative than form and function. These linked concepts are uniquely suited to organizing the rich diversity and idiosyncratic developments within the history and philosophy of the life sciences in general, and within evolutionary developmental biology in particular.

The concepts of form and function, and everything connected to them, have been used as an organizing principle in several influential analyses of the development of the biological sciences. Their symbiotic and often dialectic relationship forms the backbone of such treatises as Ernst Mayr's The Growth of Biological Thought, William Coleman's Biology in the Nineteenth Century, Ernst Cassirer's Theory of Knowledge (specifically the section on the biological sciences), Edmund Beecher Wilson's The Cell in Development and Heredity, and, of course, Edward Stuart Russell's Form and Function: A Contribution to the History of Animal Morphology (Cassirer 1950; Coleman 1971; Mayr 1982; Russell 1916; Wilson 1925).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P. and Gale, E. A. (1983). Size dependence during the development of the amphibian foot. Colchicine-induced digital loss and reduction. Journal of Embryology and Experimental Morphology 76, 177–97.Google Scholar
Allen, G. E. (1975). Life Science in the Twentieth Century. New York: Wiley.Google Scholar
Amdam, G. V., Csondes, A., Fondrk, M. K., and Page, R. E., Jr. (2006). Complex social behaviour derived from maternal reproductive traits. Nature 439, 76–8.CrossRefGoogle ScholarPubMed
Amundson, R. (2005). The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo. Cambridge and New York: Cambridge University Press.CrossRefGoogle Scholar
Appel, T. A. (1987). The Cuvier-Geoffroy Debate: French Biology in the Decades before Darwin. New York: Oxford University Press.Google Scholar
Arthur, W. (2001). Developmental drive: an important determinant of the direction of phenotypic evolution. Evolution & Development 3, 271–8.CrossRefGoogle ScholarPubMed
Arthur, W. (2002). The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–64.CrossRefGoogle ScholarPubMed
Ballauff, T. and Ungerer, E. (1954). Die Wissenschaft vom Leben; eine Geschichte der Biologie. Freiburg: K. Alber.Google Scholar
Baratte, S., Peeters, C., and Deutsch, J. S. (2006). Testing homology with morphology, development and gene expression: sex-specific thoracic appendages of the ant Diacamma. Evolution & Development 8, 433–45.CrossRefGoogle ScholarPubMed
Beldade, P., Brakefield, P. M., and Long, A. D. (2005). Generating phenotypic variation: prospects from “evo-devo” research on Bicyclus anynana wing patterns. Evolution & Development 7, 101–7.CrossRefGoogle ScholarPubMed
Beldade, P., French, V., and Brakefield, P. M. (2007). Developmental and genetic mechanisms for evolutionary diversification of serial repeats: eyespot size in Bicyclus anynana butterflies. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 310B, 191–201.CrossRefGoogle Scholar
Bonner, J. T. (1958). The Evolution of Development: Three Special Lectures Given at University College, London. Cambridge University Press.Google Scholar
Bowler, P. J. (1983). The Eclipse of Darwinism : Anti-Darwinian Evolution Theories in the Decades around 1900. Baltimore: Johns Hopkins University Press.Google Scholar
Bowler, P. J. (1996). Life's Splendid Drama: Evolutionary Biology and the Reconstruction of Life's Ancestry, 1860–1940. University of Chicago Press.Google Scholar
Bowler, P. J. (2003). Evolution: The History of an Idea. Berkeley: University of California Press.Google Scholar
Bowler, P. J. and Morus, I. R. (2005). Making Modern Science: A Historical Survey. University of Chicago Press.CrossRefGoogle Scholar
Brakefield, P. M. (2007). Butterfly eyespot patterns and how evolutionary tinkering yields diversity. Novartis Foundation Symposium 284, 90–101; discussion 101–15.CrossRefGoogle ScholarPubMed
Breidbach, O. (2006). Goethes Metamorphosenlehre. Munich: W. Fink.Google Scholar
Breidbach, O., Fliedner, H.-J., and Ries, K. (2001). Lorenz Oken (1779–1851): ein politischer Naturphilosoph. Weimar: Verlag Hermann Böhlaus Nachf.CrossRefGoogle Scholar
Breidbach, O., and Ziche, P. (2001). Naturwissenschaften um 1800: Wissenschaftskultur in Jena-Weimar. Weimar: H. Böhlaus Nachfolger.CrossRefGoogle Scholar
Callebaut, W. and Rasskin-Gutman, D. (2005). Modularity: Understanding the Development and Evolution of Natural Complex Systems. Cambridge, MA: MIT Press.Google Scholar
Cameron, R. A., Peterson, K. J., and Davidson, E. H. (1998). Developmental gene regulation and the evolution of large animal body plans. American Zoologist 38, 609–20.CrossRefGoogle Scholar
Carroll, S. B., Grenier, J. K., and Weatherbee, S. D. (2001). From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Malden, MA: Blackwell Science.Google Scholar
Carroll, S. B., Grenier, J. K., and Weatherbee, S. D. (2005). From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Malden, MA: Blackwell Publishing, 2nd edn.Google Scholar
Cassirer, E. (1950). The Problem of Knowledge: Philosophy, Science, and History since Hegel. New Haven: Yale University Press.Google Scholar
Cebra-Thomas, J., Tan, F., Sistla, S., Estes, E., Bender, G., Kim, C., Riccio, P., and Gilbert, S. F. (2005). How the turtle forms its shell: a paracrine hypothesis of carapace formation. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 304, 558–69.CrossRefGoogle ScholarPubMed
Coleman, W. (1971). Biology in the Nineteenth Century: Problems of Form, Function, and Transformation. New York: Wiley.Google Scholar
Collins, J. P., Gilbert, S. F., Laubichler, M. D., and Müller, G. B. (2007). Modeling in Evo Devo: how to integrate development, evolution, and ecology. In Laubichler, M. D. and Müller, G. B. (eds.), Modeling Biology: Structures, Evolution, behavior. Cambridge, MA: MIT Press, pp. 355–78.Google Scholar
Davidson, B. and Levine, M. (2003). Evolutionary origins of the vertebrate heart: specification of the cardiac lineage in Ciona intestinalis. Proceedings of the National Academy of Sciences USA 100, 11469–73.CrossRefGoogle ScholarPubMed
Davidson, E. H. (2006a). The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Burlington, MA: Academic Press.Google Scholar
Davidson, E. H. (2006b). The sea urchin genome: where will it lead us?Science 314, 939–40.CrossRefGoogle ScholarPubMed
Davidson, E. H., and Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800.CrossRefGoogle ScholarPubMed
Davidson, E. H., McCay, D. R., and Hood, L. (2003). Regulatory gene networks and the properties of the developmental process. Proc Nat Acad Sci of USA 100, 1475–80.CrossRefGoogle ScholarPubMed
Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C. H., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown, C. T., Livi, C. B., Lee, P. Y., Revilla, R., Rust, A. G., Pan, Z. J., Schilstra, M. J., Clarke, P. J. C., Arnone, M. I., Rowen, L., Cameron, R. A., McClay, D. R., Hood, L., and Bolouri, H. (2002). A genomic regulatory network for development. Science 295, 1669–78.CrossRefGoogle Scholar
Gilbert, S. F. (2001). Ecological developmental biology: developmental biology meets the real world. Dev Bio 233, 1–12.CrossRefGoogle ScholarPubMed
Goethe, J. W. (1824). Zur Naturwissenschaft überhaupt, besonders zur Morphologie: Erfahrung, Betrachtung, Folgerung, durch Lebensereignisse verbunden. Stuttgart: J.G. Cotta.Google Scholar
Goethe, J. W. and Günther, H. (1981). Anschauendes Denken: Goethes Schriften zur Naturwissenschaft. Frankfurt am Main: Insel.Google Scholar
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Hall, B. K. (1992). Evolutionary Developmental Biology. London and New York: Chapman and Hall.CrossRefGoogle Scholar
Hall, B. K. (1998). Evolutionary Developmental Biology. London and New York: Chapman and Hall.Google Scholar
Hall, B. K. (2000). Evo-devo or devo-evo – does it matter?Evolution & Development 2, 177–8.CrossRefGoogle ScholarPubMed
Hall, B. K. and Olson, W. M. (2003). Keywords and Concepts in Evolutionary Developmental Biology. Cambridge, MA: Harvard University Press.Google Scholar
Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology, Evolution, and Systematics 37, 123–57.CrossRefGoogle Scholar
Harafuji, N., Keys, D. N., and Levine, M. (2002). Genome-wide identification of tissue-specific enhancers in the Ciona tadpole. Proceedings of the National Academy of Sciences USA 99, 6802–5.CrossRefGoogle ScholarPubMed
Hinman, V. F., Nguyen, A. T., Cameron, R. A., and Davidson, E. H. (2003). Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proceedings of the National Academy of Sciences USA 100, 13356–61.CrossRefGoogle ScholarPubMed
Howard, M. L. and Davidson, E. H. (2004). Cis-regulatory control circuits in development. Developmental Biology 271, 109–18.CrossRefGoogle ScholarPubMed
Jahn, I. (1998). Geschichte der Biologie: Theorien, Methoden, Institutionen, Kurzbiographien. Jena: G. Fischer.Google Scholar
Kohn, D. and Kottler, M. J. (1985). The Darwinian Heritage: Including Proceedings of the Charles Darwin Centenary Conference, Florence Center for the History and Philosophy of Science, June 1982. Princeton, NJ: Princeton University Press, in association with Nova Pacifica.Google Scholar
Kruglyak, L. and Stern, D. L. (2007). Evolution. An embarrassment of switches. Science 317, 758–9.CrossRefGoogle ScholarPubMed
Laubichler, M. D. (2003). Carl Gegenbaur (1826–1903): integrating comparative anatomy and embryology. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 300, 23–31.CrossRefGoogle ScholarPubMed
Laubichler, M. D. (2005). Evolutionäre Entwicklungsbiologie. In Krohs, U. and Toepfer, G. (eds.), Einführung in die Philosophie der Biologie. Frankfurt am Main: Suhrkamp, pp. 322–37.Google Scholar
Laubichler, M. D. (2007). Evolutionary developmental biology. In Hull, D. and Ruse, M. (eds.), Cambridge Companion to the Philosophy of Biology. Cambridge University Press, pp. 342–60.Google Scholar
Laubichler, M. D. and Gadau, J. (in press). Social insects as models for Evo Devo. In Gadau, J. and Fewell, J. (eds.), Organization of Insect Societies – From Genomes to Socio-Complexity. Cambridge, MA: Harvard University Press.
Laubichler, M. D. and Maienschein, J. (2004). Development. In Horowitz, M. C.(ed.), The New Dictionary of the History of Ideas. New York: Charles Scribner's Sons, vol. II, pp. 570–4.Google Scholar
Laubichler, M. D. and Maienschein, J. (2007a). Embryos, cells, genes, and organisms: a few reflections on the history of evolutionary developmental biology. In Brandon, R. and Sansom, R. (eds.), Integrating Evolution and Development: From Theory to Practice. Cambridge, MA: MIT Press, pp. 1–24.Google Scholar
Laubichler, M. D. and Maienschein, J. (2007b). From Embryology to Evo-Devo: A History of Developmental Evolution. Cambridge, MA: MIT Press.Google Scholar
Laubichler, M. and Müller, G. B. (2007). Modeling Biology: Structures, Behavior, Evolution. Cambridge, MA: MIT Press.Google Scholar
Laubichler, M. D. and Rheinberger, H. J. (2004). Alfred Kuhn (1885–1968) and developmental evolution. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 302B 103–10.CrossRefGoogle Scholar
Levine, M. (1999). Transcriptional control of Drosophila embryogenesis. Harvey Lectures 95, 67–83.Google ScholarPubMed
Levine, M. and Davidson, E. H. (2005). Gene regulatory networks for development. Proceedings of the National Academy of Sciences USA 102, 4936–42.CrossRefGoogle Scholar
Levine, M. and Tjian, R. (2003). Transcription regulation and animal diversity. Nature 424, 147–51.CrossRefGoogle ScholarPubMed
Love, A. C. and Raff, R. A. (2003). Knowing your ancestors: themes in the history of evo-devo. Evolution & Development 5, 327–30.CrossRefGoogle ScholarPubMed
Maienschein, J. (1991). Transforming Traditions in American Biology, 1880–1915. Baltimore: Johns Hopkins University Press.Google Scholar
Mannervik, M., Nibu, Y., Zhang, H., and Levine, M. (1999). Transcriptional coregulators in development. Science 284, 606–9.CrossRefGoogle ScholarPubMed
Manzanares, M., Wada, H., Itasaki, N., Trainor, P. A., Krumlauf, R., and Holland, P. W. (2000). Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature 408, 854–7.CrossRefGoogle ScholarPubMed
Markstein, M. and Levine, M. (2002). Decoding cis-regulatory DNAs in the Drosophila genome. Current Opinion in Genetics & Development 12, 601–6.CrossRefGoogle ScholarPubMed
Markstein, M., Markstein, P., Markstein, V., and Levine, M. S. (2002). Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proceedings of the National Academy of Sciences USA 99, 763–8.CrossRefGoogle ScholarPubMed
Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Mayr, E. and Provine, W. B. (1980). The Evolutionary Synthesis: Perspectives on the Unification of Biology. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
McGregor, A. P., Orgogozo, V., Delon, I., Zanet, J., Srinivasan, D. G., Payre, F., and Stern, D. L. (2007). Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448, 587–90.CrossRefGoogle Scholar
Metscher, B. D. and Ahlberg, P. E. (1999). Zebrafish in context: uses of a laboratory model in comparative studies. Developmental Biology 210, 1–14.CrossRefGoogle ScholarPubMed
Meyer, A. (1926). Logik der Morphologie im Rahmen einer Logik der gesamten Biologie. Berlin: Springer.CrossRefGoogle Scholar
Milinkovitch, M. C. and Tzika, A. (2007). Escaping the mouse trap: the selection of new Evo-Devo model species. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 308, 337–46.CrossRefGoogle ScholarPubMed
Müller, G. B. (1989). Ancestral patterns in bird development. Journal of Evolutionary Biology 2, 31–47.CrossRefGoogle Scholar
Müller, G. B. (2005). Evolutionary developmental biology. In Wuketits, F. and Ayala, F. (eds.), Handbook of Evolution. San Diego: Wiley, vol. 2, pp. 87–115.Google Scholar
Müller, G. B. (2007a). Evo-devo: extending the evolutionary synthesis. Nature Reviews Genetics 8, 943–9.CrossRefGoogle ScholarPubMed
Müller, G. B. (2007b). Six memos for EvoDevo. In Laubichler, M. D. and Maienschein, J. (eds.), From Embryology to Evo Devo: A History of Developmental Evolution. Cambridge, MA: MIT Press, pp. 499–524.Google Scholar
Müller, G. B. and Newman, S. A. (2003). Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. Cambridge, MA: MIT Press.Google Scholar
Müller, G. B. and Newman, S. A. (2005a). Editorial: evolutionary innovation and morphological novelty. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 304, 485–6.CrossRefGoogle ScholarPubMed
Müller, G. B. and Newman, S. A. (2005b). The innovation triad: an EvoDevo agenda. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 304, 487–503.CrossRefGoogle ScholarPubMed
Naef, A. (1919). Idealistische Morphologie und Phylogenetik (Zur Methodik der systematischen Morphologie). Jena: Gustav Fischer.Google Scholar
Neff, M. W., and Rine, J. (2006). A fetching model system. Cell 124, 229–31.CrossRefGoogle Scholar
Negre, B., Casillas, S., Suzanne, M., Sánchez-Herrero, E., Akam, M., Nefedov, M., Barbadilla, A., Jong, P., and Ruiz, A. (2005). Conservation of regulatory sequences and gene expression patterns in the disintegrating Drosophila Hox gene complex. Genome Research 15, 692–700.CrossRefGoogle ScholarPubMed
Nijhout, H. F. (2003). Development and evolution of adaptive polyphenisms. Evolution & Development 5, 9–18.CrossRefGoogle ScholarPubMed
Nordenskiöld, E. (1967). Die Geschichte der Biologie. Ein Überblick. Wiesbaden: M. Sändig.Google Scholar
Nyhart, L. K. (1995). Biology Takes Form: Animal Morphology and the German Universities, 1800–1900. University of Chicago Press.Google Scholar
Nyhart, L. K.(2002). Learning from history: morphology's challenges in Germany ca. 1900. Journal of Morphology 252, 2–14.CrossRefGoogle ScholarPubMed
Orgogozo, V., Broman, K. W., and Stern, D. L. (2006). High-resolution quantitative trait locus mapping reveals sign epistasis controlling ovariole number between two Drosophila species. Genetics 173, 197–205.CrossRefGoogle ScholarPubMed
Page, R. E., Jr. (1997). The evolution of insect societies. Endeavour 21, 114–20.CrossRefGoogle ScholarPubMed
Page, R. E., Jr. and Amdam, G. V. (2007). The making of a social insect: developmental architectures of social design. Bioessays 29, 334–43.CrossRefGoogle ScholarPubMed
Peterson, K. J., Cameron, R. A., and Davidson, E. H. (2000). Bilaterian origins: significance of new experimental observations. Developmental Biology 219, 1–17.CrossRefGoogle ScholarPubMed
Prum, R. O. (2005). Evolution of the morphological innovations of feathers. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 304, 570–9.CrossRefGoogle ScholarPubMed
Raff, R. A. and Wray, G. (1989). Heterochrony: developmental mechanisms and evolutionary results. Journal of Evolutionary Biology 2, 409–34.CrossRefGoogle Scholar
Richards, R. J. (1992). The Meaning of Evolution: The Morphological Construction and Ideological Reconstruction of Darwin's Theory. University of Chicago Press.CrossRefGoogle Scholar
Richards, R. J.(2002). The Romantic Conception of Life: Science and Philosophy in the Age of Goethe. University of Chicago Press.CrossRefGoogle Scholar
Riedl, R. (1975). Die Ordnung des Lebendigen: Systembedingungen d. Evolution. Hamburg and Berlin: Parey.Google Scholar
Roger, J. and Williams, L. P. (1997). Buffon: A Life in Natural History. Ithaca, NY: Cornell University Press.Google Scholar
Rudwick, M. J. S. and Cuvier, G. (1997). Georges Cuvier, Fossil Bones, and Geological Catastrophes: New Translations and Interpretations of the Primary Texts. University of Chicago Press.CrossRefGoogle Scholar
Russell, E. S. (1916). Form and Function: A Contribution to the History of Animal Morphology. London: J. Murray.Google Scholar
Salazar-Ciudad, I. (2006). Developmental constraints vs. variational properties: how pattern formation can help to understand evolution and development. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 306, 107–25.CrossRefGoogle ScholarPubMed
Santini, S., Boore, J. L., and Meyer, A. (2003). Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Research 13, 1111–22.CrossRefGoogle ScholarPubMed
Sapp, J. (2003). Genesis: The Evolution of Biology. New York and Oxford: Oxford University Press.CrossRefGoogle Scholar
Schlosser, G. and Wagner, G. P. (2004). Modularity in Development and Evolution. University of Chicago Press.Google Scholar
Shi, W., Levine, M., and Davidson, B. (2005). Unraveling genomic regulatory networks in the simple chordate, Ciona intestinalis. Genome Research 15, 1668–74.CrossRefGoogle ScholarPubMed
Stathopoulos, A. and Levine, M. (2002). Dorsal gradient networks in the Drosophila embryo. Developmental Biology 246, 57–67.CrossRefGoogle ScholarPubMed
Stathopoulos, A. and Levine, M. (2004). Whole-genome analysis of Drosophila gastrulation. Current Opinion in Genetics & Development 14, 477–84.CrossRefGoogle ScholarPubMed
Stern, D. L. (2003). The Hox gene Ultrabithorax modulates the shape and size of the third leg of Drosophila by influencing diverse mechanisms. Developmental Biology 256, 355–66.CrossRefGoogle ScholarPubMed
Stern, D. L. (2006). Perspective: developmental biology – morphing into shape. Science 313, 50–1.CrossRefGoogle Scholar
Stern, D. L. (2007). The developmental genetics of microevolution. Novartis Foundation Symposium 284, 191–200; discussion 200–6.CrossRefGoogle ScholarPubMed
Sucena, E., Delon, I., Jones, I., Payre, F., and Stern, D. L. (2003). Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424, 935–8.CrossRefGoogle ScholarPubMed
Thompson, D. A. W. (1917). On Growth and Form. CambridgeUniversity Press.CrossRefGoogle Scholar
Toth, A. L. and Robinson, G. E. (2007). Evo-devo and the evolution of social behavior. Trends in Genetics 23, 334–41.CrossRefGoogle ScholarPubMed
Troll, W. (1928). Organisation und Gestalt im Bereich der Blüte. Berlin: J. Springer.Google Scholar
Wagner, G. P. (2000). What is the promise of developmental evolution? Part I: why is developmental biology necessary to explain evolutionary innovations?Journal of Experimental Zoology 288, 95–8.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Wagner, G. P. (2001). What is the promise of developmental evolution? Part II: a causal explanation of evolutionary innovations may be impossible. Journal of Experimental Zoology 291, 305–9.CrossRefGoogle ScholarPubMed
Wagner, G. P., Chiu, C.-H., and Laubichler, M. D. (2000). Developmental evolution as a mechanistic science: the inference from developmental mechanisms to evolutionary processes. American Zoologist 40, 819–31.Google Scholar
Wagner, G. P. and Larsson, H. C. (2003). What is the promise of developmental evolution? Part III: the crucible of developmental evolution. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 300, 1–4.Google Scholar
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. Oxford and New York: Oxford University Press.Google Scholar
Wilson, E. B. (1925). The Cell in Development and Heredity. New York: The Macmillan Company.Google Scholar
Wimsatt, W. C. (2007). Echoes of Haeckel? Reentrenching development in evolution. In Laubichler, M. D. and Maienschein, J. (eds.), From Embryology to Evo-Devo: A History of Developmental Evolution. Cambridge, MA: MIT Press, pp. 309–56.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×