Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T19:09:30.908Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2016

Marcelo Viana
Affiliation:
Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro
Krerley Oliveira
Affiliation:
Universidade Federal de Alagoas, Brazil
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Aar97] J., Aaronson. An introduction to infinite ergodic theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, 1997.
[AB] A., Avila and J., Bochi. Proof of the subadditive ergodic theorem. Preprint www.mat.puc-rio.br/~jairo/docs/kingbirk.pdf.
[AF07] A., Avila and G., Forni. Weak mixing for interval exchange transformations and translation flows. Ann. Math., 165:637–664, 2007.Google Scholar
[AKM65] R., Adler, A., Konheim and M., McAndrew. Topological entropy. Trans. Amer. Math. Soc., 114:309–319, 1965.Google Scholar
[AKN06] V., Arnold, V., Kozlov and A., Neishtadt. Mathematical aspects of classical and celestial mechanics, volume 3 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, third edition, 2006. [Dynamical systems. III], Translated from the Russian original by E., Khukhro.Google Scholar
[Ano67] D. V., Anosov. Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov Math. Inst., 90:1–235, 1967.Google Scholar
[Arn78] V. I., Arnold. Mathematical methods of classical mechanics. Springer-Verlag, 1978.Google Scholar
[AS67] D. V., Anosov and Ya. G., Sinai. Certain smooth ergodic systems. Russian Math. Surveys, 22:103–167, 1967.Google Scholar
[Bal00] V., Baladi. Positive transfer operators and decay of correlations. World Scientific Publishing Co. Inc., 2000.Google Scholar
[BDV05] C., Bonatti, L. J., Díaz and M., Viana. Dynamics beyond uniform hyperbolicity, volume 102 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, 2005.Google Scholar
[Bil68] P., Billingsley. Convergence of probability measures. John Wiley & Sons Inc., 1968.Google Scholar
[Bil71] P., Billingsley. Weak convergence of measures: Applications in probability. Society for Industrial and Applied Mathematics, 1971. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 5.
[Bir13] G. D., Birkhoff. Proof of Poincaré's last Geometric Theorem. Trans. Amer. Math. Soc., 14:14–22, 1913.Google Scholar
[Bir67] G., Birkhoff. Lattice theory, volume 25. A.M.S. Colloq. Publ., 1967.Google Scholar
[BK83] M., Brin and A., Katok. On local entropy. In Geometric dynamics (Rio de Janeiro, 1981), volume 1007 of Lecture Notes in Math., pages 30–38. Springer-Verlag, 1983.Google Scholar
[BLY] D., Burguet, G., Liao and J., Yang. Asymptotic h-expansiveness rate of C8 maps. arxiv:1404.1771.
[Bos86] J.-B., Bost. Tores invariants des syst`emes hamiltoniens. Astérisque, 133–134:113–157, 1986.Google Scholar
[Bos93] M., Boshernitzan. Quantitative recurrence results. Invent. Math., 113(3): 617–631, 1993.Google Scholar
[Bow71] R., Bowen. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc., 153:401–414, 1971.Google Scholar
[Bow72] R., Bowen. Entropy expansive maps. Trans. Am. Math. Soc., 164:323–331, 1972.Google Scholar
[Bow75a] R., Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lect. Notes in Math. Springer-Verlag, 1975.Google Scholar
[Bow75b] R., Bowen. A horseshoe with positive measure. Invent. Math., 29:203–204, 1975.Google Scholar
[Bow78] R., Bowen. Entropy and the fundamental group. In The Structure of Attractors in Dynamical Systems, volume 668 of Lecture Notes in Math., pages 21–29. Springer-Verlag, 1978.Google Scholar
[BS00] L., Barreira and J., Schmeling. Sets of “non-typical” points have full topological entropy and full Hausdorff dimension. Israel J. Math., 116:29–70, 2000.Google Scholar
[Buz97] J., Buzzi. Intrinsic ergodicity for smooth interval maps. Israel J. Math, 100:125–161, 1997.Google Scholar
[Car70] H., Cartan. Differential forms. Hermann, 1970.
[Cas04] A. A., Castro. Teoria da medida. Projeto Euclides. IMPA, 2004.
[Cla72] J., Clark. A Kolmogorov shift with no roots. ProQuest LLC, Ann Arbor, MI, 1972. PhD. Thesis, Stanford University.
[dC79] M. do, Carmo. Geometria riemanniana, volume 10 of Projeto Euclides. Instituto de Matemática Pura e Aplicada, 1979.
[Dei85] K., Deimling. Nonlinear functional analysis. Springer-Verlag, 1985.Google Scholar
[Din70] E., Dinaburg. A correlation between topological entropy and metric entropy. Dokl. Akad. Nauk SSSR, 190:19–22, 1970.Google Scholar
[Din71] E., Dinaburg. A connection between various entropy characterizations of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat., 35:324–366, 1971.Google Scholar
[dlL93] R. de la, Llave. Introduction to K.A.M. theory. In Computational physics (Almuñécar, 1992), pages 73–105. World Sci. Publ., 1993.Google Scholar
[DS57] N., Dunford and J., Schwarz. Linear operators I: General theory.Wiley & Sons, 1957.Google Scholar
[DS63] N., Dunford and J., Schwarz. Linear operators II: Spectral theory. Wiley & Sons, 1963.Google Scholar
[Dug66] J., Dugundji. Topology. Allyn and Bacon Inc., 1966.Google Scholar
[Edw79] R. E., Edwards. Fourier series. A modern introduction. Vol. 1, volume 64 of Graduate Texts in Mathematics. Springer-Verlag, second edition, 1979.Google Scholar
[ET36] P., Erdös and P., Turán. On some sequences of integers. J. London. Math. Soc., 11:261–264, 1936.Google Scholar
[Fal90] K., Falconer. Fractal geometry: Mathematical foundations and applications. John Wiley & Sons Ltd., 1990.Google Scholar
[Fer02] R., Fernandez. Medida e integraç ão. Projeto Euclides. IMPA, 2002.
[FFT09] S., Ferenczi, A., Fisher and M., Talet. Minimality and unique ergodicity for adic transformations. J. Anal. Math., 109:1–31, 2009.Google Scholar
[FO70] N., Friedman and D., Ornstein. On isomorphism of weak Bernoulli transformations. Advances in Math., 5:365–394, 1970.Google Scholar
[Fri69] N., Friedman. Introduction to ergodic theory. Van Nostrand, 1969.Google Scholar
[Fur61] H., Furstenberg. Strict ergodicity and transformation of the torus. Amer. J. Math., 83:573–601, 1961.Google Scholar
[Fur77] H., Furstenberg. Ergodic behavior and a theorem of Szemerédi on arithmetic progressions. J. d'Analyse Math., 31:204–256, 1977.Google Scholar
[Fur81] H., Furstenberg. Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, 1981.Google Scholar
[Goo71a] T., Goodman. Relating topological entropy and measure entropy. Bull. London Math. Soc., 3:176–180, 1971.Google Scholar
[Goo71b] G., Goodwin. Optimal input signals for nonlinear-system identification. Proc. Inst. Elec. Engrs., 118:922–926, 1971.Google Scholar
[GT08] B., Green and T., Tao. The primes contain arbitrarily long arithmetic progressions. Ann. of Math., 167:481–547, 2008.Google Scholar
[Gur61] B. M., Gurevič. The entropy of horocycle flows. Dokl. Akad. Nauk SSSR, 136:768–770, 1961.Google Scholar
[Hal50] P., Halmos. Measure Theory. Van Nostrand, 1950.Google Scholar
[Hal51] P., Halmos. Introduction to Hilbert space and the theory of spectral multiplicity. Chelsea Publishing Company, 1951.Google Scholar
[Hay] N., Haydn. Multiple measures of maximal entropy and equilibrium states for one-dimensional subshifts. Preprint, Penn State University.
[Hir94] M., Hirsch. Differential topology, volume 33 of Graduate Texts in Mathematics. Springer-Verlag, 1994. Corrected reprint of the 1976 original.Google Scholar
[Hof77] F., Hofbauer. Examples for the nonuniqueness of the equilibrium state. Trans. Amer. Math. Soc., 228:223–241, 1977.Google Scholar
[Hop39] E. F., Hopf. Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig, 91:261–304, 1939.Google Scholar
[HvN42] P., Halmos and J. von, Neumann. Operator methods in classical mechanics. II. Ann. Math., 43:332–350, 1942.Google Scholar
[Jac60] K., Jacobs. Neuere Methoden und Ergebnisse der Ergodentheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 29. Springer-Verlag, 1960.Google Scholar
[Jac63] K., Jacobs. Lecture notes on ergodic theory, 1962/63. Parts I, II. Matematisk Institut, Aarhus Universitet, Aarhus, 1963.Google Scholar
[Kal82] S., Kalikow. T, T-1 transformation is not loosely Bernoulli. Ann. Math., 115:393–409, 1982.Google Scholar
[Kat71] Yi., Katznelson. Ergodic automorphisms of Tn are Bernoulli shifts. Israel J. Math., 10:186–195, 1971.Google Scholar
[Kat80] A., Katok. Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. IHES, 51:137–173, 1980.Google Scholar
[Kea75] M., Keane. Interval exchange transformations. Math. Zeit., 141:25–31, 1975.Google Scholar
[KM10] S., Kalikow and R., McCutcheon. An outline of ergodic theory, volume 122 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2010.Google Scholar
[Kok35] J. F., Koksma. Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins. Compositio Math., 2:250–258, 1935.Google Scholar
[KR80] M., Keane and G., Rauzy. Stricte ergodicité des échanges d'intervalles. Math. Zeit., 174:203–212, 1980.Google Scholar
[Kri70] W., Krieger. On entropy and generators of measure-preserving transformations. Trans. Amer. Math. Soc., 149:453–464, 1970.Google Scholar
[Kri75] W., Krieger. On the uniqueness of the equilibrium state. Math. Systems Theory, 8:97–104, 1974/75.Google Scholar
[KSS91] A., Krámli, N., Simányi and D., Szász. The K-property of three billiard balls. Ann. Math., 133:37–72, 1991.Google Scholar
[KSS92] A., Krámli, N., Simányi and D., Szász. The K-property of four billiard balls. Comm. Math. Phys., 144:107–148, 1992.Google Scholar
[KW82] Y., Katznelson and B., Weiss. A simple proof of some ergodic theorems. Israel J. Math., 42:291–296, 1982.Google Scholar
[Lan73] O., Lanford. Entropy and equilibrium states in classical statistical mechanics. In Statistical mechanics and mathematical problems, volume 20 of Lecture Notes in Physics, page 1–113. Springer-Verlag, 1973.Google Scholar
[Led84] F., Ledrappier. Propriétés ergodiques des mesures de Sinaï. Publ. Math. I.H.E.S., 59:163–188, 1984.Google Scholar
[Lin77] D., Lind. The structure of skew products with ergodic group actions. Israel J. Math., 28:205–248, 1977.Google Scholar
[LS82] F., Ledrappier and J.-M., Strelcyn. A proof of the estimation from below in Pesin's entropy formula. Ergod. Th & Dynam. Sys, 2:203–219, 1982.Google Scholar
[LVY13] G., Liao, M., Viana and J., Yang. The entropy conjecture for diffeomorphisms away from tangencies. J. Eur. Math. Soc. (JEMS), 15(6):2043–2060, 2013.Google Scholar
[LY85a] F., Ledrappier and L.-S., Young. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula. Ann. Math., 122:509–539, 1985.Google Scholar
[LY85b] F., Ledrappier and L.-S., Young. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. Math., 122:540–574, 1985.Google Scholar
[Man75] A., Manning. Topological entropy and the first homology group. In Dynamical Systems, Warwick, 1974, volume 468 of Lecture Notes in Math., pages 185–190. Springer-Verlag, 1975.Google Scholar
[Mañ85] R., Mañé. Hyperbolicity, sinks and measure in one-dimensional dynamics. Comm. Math. Phys., 100:495–524, 1985.Google Scholar
[Mañ87] R., Mañé. Ergodic theory and differentiable dynamics. Springer-Verlag, 1987.Google Scholar
[Mas82] H., Masur. Interval exchange transformations and measured foliations. Ann. Math, 115:169–200, 1982.Google Scholar
[Mey00] C., Meyer. Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics (SIAM), 2000.
[Mis73] M., Misiurewicz. Diffeomorphim without any measure of maximal entropy. Bull. Acad. Pol. Sci., 21:903–910, 1973.Google Scholar
[Mis76] M., Misiurewicz. A short proof of the variational principle for a Z+N action on a compact space. Asterisque, 40:147–187, 1976.Google Scholar
[MP77a] M., Misiurewicz and F., Przytycki. Entropy conjecture for tori. Bull. Pol. Acad. Sci. Math., 25:575–578, 1977.
[MP77b] M., Misiurewicz and F., Przytycki. Topological entropy and degree of smooth mappings. Bull. Pol. Acad. Sci. Math., 25:573–574, 1977.Google Scholar
[MP08] W., Marzantowicz and F., Przytycki. Estimates of the topological entropy from below for continuous self-maps on some compact manifolds. Discrete Contin. Dyn. Syst. Ser., 21:501–512, 2008.Google Scholar
[MT78] G., Miles and R., Thomas. Generalized torus automorphisms are Bernoullian. Advances in Math. Supplementary Studies, 2:231–249, 1978.Google Scholar
[New88] S., Newhouse. Entropy and volume. Ergodic Theory Dynam. Systems, 8*(Charles Conley Memorial Issue):283–299, 1988.Google Scholar
[New90] S., Newhouse. Continuity properties of entropy. Ann. Math., 129:215–235, 1990. Errata in Ann. Math. 131:409–410, 1990.Google Scholar
[NP66] D., Newton and W., Parry. On a factor automorphism of a normal dynamical system. Ann. Math. Statist., 37:1528–1533, 1966.Google Scholar
[NR97] A., Nogueira and D., Rudolph. Topological weak-mixing of interval exchange maps. Ergod. Th. & Dynam. Sys., 17:1183–1209, 1997.Google Scholar
[Orn60] D., Ornstein. On invariant measures. Bull. Amer. Math. Soc., 66:297–300, 1960.Google Scholar
[Orn70] D., Ornstein. Bernoulli shifts with the same entropy are isomorphic. Advances in Math., 4:337–352 (1970), 1970.Google Scholar
[Orn72] Donald S., Ornstein. On the root problem in ergodic theory. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pages 347–356. Univ. California Press, 1972.Google Scholar
[Orn74] D., Ornstein. Ergodic theory, randomness, and dynamical systems. Yale University Press, 1974. James K. Whittemore Lectures in Mathematics given at Yale University, Yale Mathematical Monographs, No. 5.Google Scholar
[OS73] D., Ornstein and P., Shields. An uncountable family of K-automorphisms. Advances in Math., 10:63–88, 1973.Google Scholar
[OU41] J. C., Oxtoby and S. M., Ulam. Measure-preserving homeomorphisms and metrical transitivity. Ann. Math., 42:874–920, 1941.Google Scholar
[Par53] O. S., Parasyuk. Flows of horocycles on surfaces of constant negative curvature. Uspehi Matem. Nauk (N.S.), 8:125–126, 1953.Google Scholar
[Pes77] Ya. B., Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys, 324:55–114, 1977.Google Scholar
[Pes97] Ya., Pesin. Dimension theory in dynamical systems: Contemporary views and applications. University of Chicago Press, 1997.Google Scholar
[Pet83] K., Petersen. Ergodic theory. Cambridge University Press, 1983.Google Scholar
[Phe93] R., Phelps. Convex functions, monotone operators and differentiability, volume 1364 of Lecture Notes in Mathematics. Springer-Verlag, second edition, 1993.Google Scholar
[Pin60] M. S., Pinsker. Informatsiya i informatsionnaya ustoichivostsluchainykh velichin i protsessov. Problemy Peredači Informacii, Vyp. 7. Izdat. Akad. Nauk SSSR, 1960.
[PT93] J., Palis and F., Takens. Hyperbolicity and sensitive-chaotic dynamics at homoclinic bifurcations. Cambridge University Press, 1993.Google Scholar
[PU10] F., Przytycki and M., Urbański. Conformal fractals: Ergodic theory methods, volume 371 of London Mathematical Society Lecture Note Series. Cambridge University Press, 2010.Google Scholar
[PW72a] W., Parry and P., Walters. Errata: “Endomorphisms of a Lebesgue space”. Bull. Amer. Math. Soc., 78:628, 1972.Google Scholar
[PW72b] W., Parry and P., Walters. Endomorphisms of a Lebesgue space. Bull. Amer. Math. Soc., 78:272–276, 1972.Google Scholar
[PY98] M., Pollicott and M., Yuri. Dynamical systems and ergodic theory, volume 40 of London Mathematical Society Student Texts. Cambridge University Press, 1998.Google Scholar
[Qua99] A., Quas. Most expanding maps have no absolutely continuous invariant mesure. Studia Math., 134:69–78, 1999.Google Scholar
[Que87] M., Queffélec. Substitution dynamical systems—spectral analysis, volume 1294 of Lecture Notes in Mathematics. Springer-Verlag, 1987.Google Scholar
[Rok61] V. A., Rokhlin. Exact endomorphisms of a Lebesgue space. Izv. Akad. Nauk SSSR Ser. Mat., 25:499–530, 1961.Google Scholar
[Rok62] V. A., Rokhlin. On the fundamental ideas of measure theory. A. M. S. Transl., 10:1–54, 1962. Transl. from Mat. Sbornik 25 (1949), 107–150. First published by the A. M. S. in 1952 as Translation Number 71.Google Scholar
[Rok67a] V. A., Rokhlin. Lectures on the entropy theory of measure-preserving transformations. Russ. Math. Surv., 22(5):1–52, 1967. Transl. from Uspekhi Mat. Nauk. 22(5) (1967), 3–56.Google Scholar
[Rok67b] V. A., Rokhlin. Metric properties of endomorphisms of compact commutative groups. Amer. Math. Soc. Transl., 64:244–252, 1967.Google Scholar
[Roy63] H. L., Royden. Real analysis. Macmillan, 1963.Google Scholar
[RS61] V. A., Rokhlin and Ja. G., Sinaĭ. The structure and properties of invariant measurable partitions. Dokl. Akad. Nauk SSSR, 141:1038–1041, 1961.Google Scholar
[Rud87] W., Rudin. Real and complex analysis. McGraw-Hill, 1987.Google Scholar
[Rue73] D., Ruelle. Statistical mechanics on a compact set with Z? action satisfying expansiveness and specification. Trans. Amer. Math. Soc., 186:237–251, 1973.Google Scholar
[Rue78] D., Ruelle. An inequality for the entropy of differentiable maps. Bull. Braz. Math. Soc., 9:83–87, 1978.Google Scholar
[Rue04] D., Ruelle. Thermodynamic formalism: The mathematical structures of equilibrium statistical mechanics. Cambridge Mathematical Library. Cambridge University Press, second edition, 2004.Google Scholar
[RY80] C., Robinson and L. S., Young. Nonabsolutely continuous foliations for an Anosov diffeomorphism. Invent. Math., 61:159–176, 1980.Google Scholar
[SC87] Ya., Sinaĭ and Nikolay, Chernov. Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Uspekhi Mat. Nauk, 42:153–174, 256, 1987.Google Scholar
[Shu69] M., Shub. Endomorphisms of compact differentiable manifolds. Amer. Journal of Math., 91:129–155, 1969.Google Scholar
[Shu74] M., Shub. Dynamical systems, filtrations and entropy. Bull. Amer. Math. Soc., 80:27–41, 1974.Google Scholar
[Sim02] N., Simányi. The complete hyperbolicity of cylindric billiards. Ergodic Theory Dynam. Systems, 22:281–302, 2002.Google Scholar
[Sin63] Ya., Sinaĭ. On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics. Soviet. Math. Dokl., 4:1818–1822, 1963.Google Scholar
[Sin70] Ya., Sinaĭ. Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat. Nauk, 25:141–192, 1970.Google Scholar
[Ste58] E., Sternberg. On the structure of local homeomorphisms of Euclidean n-space – II. Amer. J. Math., 80:623–631, 1958.Google Scholar
[SW75] M., Shub and R., Williams. Entropy and stability. Topology, 14:329–338, 1975.Google Scholar
[SX10] R., Saghin and Z., Xia. The entropy conjecture for partially hyperbolic diffeomorphisms with 1-D center. Topology Appl., 157:29–34, 2010.Google Scholar
[Sze75] S., Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:199–245, 1975.Google Scholar
[vdW27] B. van der, Waerden. Beweis eibe Baudetschen Vermutung. Nieuw Arch. Wisk., 15:212–216, 1927.
[Vee82] W., Veech. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math., 115:201–242, 1982.Google Scholar
[Ver99] Alberto, Verjovsky. Sistemas de Anosov, volume 9 of Monographs of the Institute of Mathematics and Related Sciences. Instituto de Matemática y Ciencias Afines, IMCA, Lima, 1999.
[Via14] M., Viana. Lectures on Lyapunov exponents. Cambridge University Press, 2014.Google Scholar
[VO14] M., Viana and K., Oliveira. Fundamentos da Teoria Ergódica. Coleç ão Fronteiras da Matemática. Sociedade Brasileira de Matemática, 2014.
[Wal73] P., Walters. Some results on the classification of non-invertible measure preserving transformations. In Recent advances in topological dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), pages 266–276. Lecture Notes in Math., Vol. 318. Springer-Verlag, 1973.Google Scholar
[Wal75] P., Walters. A variational principle for the pressure of continuous transformations. Amer. J. Math., 97:937–971, 1975.Google Scholar
[Wal82] P., Walters. An introduction to ergodic theory. Springer-Verlag, 1982.Google Scholar
[Wey16] H., Weyl. Uber die Gleichverteilungen von Zahlen mod Eins. Math. Ann., 77:313–352, 1916.Google Scholar
[Yan80] K., Yano. A remark on the topological entropy of homeomorphisms. Invent. Math., 59:215–220, 1980.Google Scholar
[Yoc92] J.-C., Yoccoz. Travaux de Herman sur les tores invariants. Astérisque, 206:Exp. No. 754, 4, 311–344, 1992. Séminaire Bourbaki, Vol. 1991/92.
[Yom87] Y., Yomdin. Volume growth and entropy. Israel J. Math., 57:285–300, 1987.Google Scholar
[Yos68] K., Yosida. Functional analysis. Second edition. Die Grundlehren der mathematischen Wissenschaften, Band 123. Springer-Verlag, 1968.Google Scholar
[Yuz68] S. A., Yuzvinskii. Metric properties of endomorphisms of compact groups. Amer. Math. Soc. Transl., 66:63–98, 1968.Google Scholar
[Zyg68] A., Zygmund. Trigonometric series: Vols. I, II. Second edition, reprinted with corrections and some additions. Cambridge University Press, 1968.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Krerley Oliveira, Universidade Federal de Alagoas, Brazil
  • Book: Foundations of Ergodic Theory
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316422601.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Krerley Oliveira, Universidade Federal de Alagoas, Brazil
  • Book: Foundations of Ergodic Theory
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316422601.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Krerley Oliveira, Universidade Federal de Alagoas, Brazil
  • Book: Foundations of Ergodic Theory
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316422601.016
Available formats
×