Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-21T18:17:45.119Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 June 2025

Andrés Perea
Affiliation:
Universiteit Maastricht, Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
From Decision Theory to Game Theory
Reasoning about the Decisions of Others
, pp. 532 - 538
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Anscombe, F. J. and Aumann, R. J. (1963), A definition of subjective probability, Annals of Mathematical Statistics 34, 199205.10.1214/aoms/1177704255CrossRefGoogle Scholar
Apt, K. R. (2004), Uniform proofs of order independence for various strategy elimination procedures, Contributions to Theoretical Economics 4, Article 5, 48.Google Scholar
Apt, K. R. (2011), Direct proofs for order independence, Economics Bulletin 31, 106115.Google Scholar
Armbruster, W. and Böge, W. (1979), Bayesian game theory, in Moeschlin, O. and Pallaschke, D. (eds.), Game Theory and Related Topics, North-Holland, Amsterdam.Google Scholar
Asheim, G. B. (2006), The Consistent Preferences Approach to Deductive Reasoning in Games, Theory and Decision Library, Springer, Dordrecht.Google Scholar
Aumann, R. J. (1974), Subjectivity and correlation in randomized strategies, Journal of Mathematical Economics 1, 6796.CrossRefGoogle Scholar
Aumann, R. J. (1976), Agreeing to disagree, Annals of Statistics 4, 12361239.10.1214/aos/1176343654CrossRefGoogle Scholar
Aumann, R. J. (1987), Correlated equilibrium as an expression of Bayesian rationality, Econometrica 55, 118.10.2307/1911154CrossRefGoogle Scholar
Aumann, R. and Brandenburger, A. (1995), Epistemic conditions for Nash equilibrium, Econometrica 63, 11611180.CrossRefGoogle Scholar
Aumann, R. and Drèze, J. (2008), Rational expectations in games, American Economic Review 98, 7286.10.1257/aer.98.1.72CrossRefGoogle Scholar
Bach, C. W. and Cabessa, J. (2017), Limit-agreeing to disagree, Journal of Logic and Computation 27, 11691187.Google Scholar
Bach, C. W. and Perea, A. (2013), Agreeing to disagree with lexicographic prior beliefs, Mathematical Social Sciences 66, 129133.10.1016/j.mathsocsci.2013.03.004CrossRefGoogle Scholar
Bach, C. W. and Perea, A. (2017), Incomplete information and equilibrium, EPICENTER Working Paper No. 9.Google Scholar
Bach, C. W. and Perea, A. (2020a), Two definitions of correlation equilibrium, Journal of Mathematical Economics 90, 1224.10.1016/j.jmateco.2020.05.001CrossRefGoogle Scholar
Bach, C. W. and Perea, A. (2020b), Generalized Nash equilibrium without common belief in rationality, Economics Letters 186, 16.10.1016/j.econlet.2019.108526CrossRefGoogle Scholar
Bach, C. W. and Perea, A. (2021), Incomplete information and iterated strict dominance, Oxford Economic Papers 73, 820836.10.1093/oep/gpz075CrossRefGoogle Scholar
Bach, C. W. and Perea, A. (2023a), Structure-preserving transformations of epistemic models, Economic Inquiry 61, 693–719, DOI: 10.1111/ecin.13136.10.1111/ecin.13136CrossRefGoogle Scholar
Bach, C. W. and Perea, A. (2023b), Bayesian equilibrium and generalized Nash equilibrium.Google Scholar
Bach, C. W. and Tsakas, E. (2014), Pairwise epistemic conditions for Nash equilibrium, Games and Economic Behavior 85, 4859.CrossRefGoogle Scholar
Bacharach, M. (1985), Some extensions of a claim of Aumann in an axiomatic model of knowledge, Journal of Economic Theory 37, 167190.10.1016/0022-0531(85)90035-3CrossRefGoogle Scholar
Barelli, P. (2009), Consistency of beliefs and epistemic conditions for Nash and correlated equilibrium, Games and Economic Behavior 67, 363375.10.1016/j.geb.2009.02.003CrossRefGoogle Scholar
Battigalli, P. (1997), On rationalizability in extensive games, Journal of Economic Theory 74, 4061.10.1006/jeth.1996.2252CrossRefGoogle Scholar
Battigalli, P. (2003), Rationalizability in infinite, dynamic games of incomplete information, Research in Economics 57, 138.10.1016/S1090-9443(02)00054-6CrossRefGoogle Scholar
Battigalli, P. and Bonanno, G. (1999), Recent results on belief, knowledge and the epistemic foundations of game theory, Research in Economics 53, 149225.10.1006/reec.1999.0187CrossRefGoogle Scholar
Battigalli, P., Corrao, R. and Dufwenberg, M. (2019), Incorporating belief-dependent motivation in games, Journal of Economic Behavior and Organization 167, 185218.10.1016/j.jebo.2019.04.009CrossRefGoogle Scholar
Battigalli, P., Corrao, R. and Sanna, F. (2020), Epistemic game theory without types structures: An application to psychological games, Games and Economic Behavior 120, 2857.10.1016/j.geb.2019.12.005CrossRefGoogle Scholar
Battigalli, P., Di Tillio, A., Grillo, E. and Penta, A. (2011), Interactive epistemology and solution concepts for games with asymmetric information, The B.E. Journal of Theoretical Economics 11, DOI: 10.2202/1935-1704.1637.10.2202/1935-1704.1637CrossRefGoogle Scholar
Battigalli, P. and Dufwenberg, M. (2009), Dynamic psychological games, Journal of Economic Theory 144, 135.CrossRefGoogle Scholar
Battigalli, P., Friedenberg, A. and Siniscalchi, M. (2023), Epistemic Game Theory: Reasoning about Strategic Uncertainty, In progress.Google Scholar
Battigalli, P. and Prestipino, A. (2013), Transparent restrictions on beliefs and forward-induction reasoning in games with asymmetric information, The B.E. Journal of Theoretical Economics 13, 79130.CrossRefGoogle Scholar
Battigalli, P. and Siniscalchi, M. (1999), Hierarchies of conditional beliefs and interactive epistemology in dynamic games, Journal of Economic Theory 88, 188230.10.1006/jeth.1999.2555CrossRefGoogle Scholar
Battigalli, P. and Siniscalchi, M. (2002), Strong belief and forward induction reasoning, Journal of Economic Theory 106, 356391.CrossRefGoogle Scholar
Battigalli, P. and Siniscalchi, M. (2003a), Rationalization and incomplete information, The B.E. Journal of Theoretical Economics 3, doi.org/10.2202/1534-5963.1073.Google Scholar
Battigalli, P. and Siniscalchi, M. (2003b), Rationalizable bidding in first-price auctions, Games and Economic Behavior 45, 3872.10.1016/S0899-8256(02)00543-2CrossRefGoogle Scholar
Battigalli, P. and Siniscalchi, M. (2007), Interactive epistemology in games with payoff uncertainty, Research in Economics 61, 165184.10.1016/j.rie.2007.10.003CrossRefGoogle Scholar
Bergemann, D. and Morris, S. (2003), Robust implementation: The role of large type spaces, Mimeo.Google Scholar
Bergemann, D. and Morris, S. (2007), Belief free incomplete information games, Cowles Foundation Discussion Papers 1927.Google Scholar
Bernheim, B. D. (1984), Rationalizable strategic behavior, Econometrica 52, 10071028.10.2307/1911196CrossRefGoogle Scholar
Bjorndahl, A., Halpern, J. Y. and Pass, R. (2013), Language-based games. In: Proceedings of the Fourteenth Conference on Theoretical Aspects of Rationality and Knowledge, 3948. Extended working paper available at: www.cs.cornell.edu/~rafael/papers/lbg.pdfGoogle Scholar
Board, O. (2002), Knowledge, beliefs and game-theoretic solution concepts, Oxford Review of Economic Policy 18, 433445.10.1093/oxrep/18.4.418CrossRefGoogle Scholar
Böge, W. and Eisele, T. H. (1979), On solutions of Bayesian games, International Journal of Game Theory 8, 193215.10.1007/BF01766706CrossRefGoogle Scholar
Bonanno, G. (2015), Epistemic foundations of game theory, in van Ditmarsch, H., Halpern, J. Y., van der Hoek, W. and Kooi, B. (eds.), Handbook of Logics for Knowledge and Belief, College Publications, pp. 411450.Google Scholar
Bonanno, G. and Nehring, K. (1999), How to make sense of the common prior assumption under incomplete information, International Journal of Game Theory 28, 409434.10.1007/s001820050117CrossRefGoogle Scholar
Border, K. C. (1985), Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge.10.1017/CBO9780511625756CrossRefGoogle Scholar
Borel, É. (1921), La théorie du jeu et les equations intégrales à noyau symétrique, Comptes Rendus Hebdomadaire des Séances de l’Académie des Sciences (Paris) 173, 13041308. (Translated by Leonard, J. Savage as “The theory of play and integral equations with skew symmetric kernels,” Econometrica 21 (1953), 97–100).Google Scholar
Borel, É. (1924), Eléments de la Théorie des Probabilités, 3rd ed., Hermann, Paris. (Pages 204–221 translated by Leonard, J. Savage as “On games that involve chance and the skill of players,” Econometrica 21 (1953), 101–115).Google Scholar
Borel, É. (1927), Sur les systèmes de formes linéaires à déterminant symétrique gauche et la théorie générale du jeu, Comptes Rendus Hebdomadaire des Séances de l’Académie des Sciences (Paris) 184, 5254. (Translated by Leonard, J. Savage as “On systems of linear forms of skew symmetric determinant and the general theory of play,” Econometrica 21 (1953), 116–117).Google Scholar
Brandenburger, A. (1992), Knowledge and equilibrium in games, Journal of Economic Perspectives 6, 83101.10.1257/jep.6.4.83CrossRefGoogle Scholar
Brandenburger, A. (2007), The power of paradox: some recent developments in interactive epistemology, International Journal of Game Theory 35, 465492.10.1007/s00182-006-0061-2CrossRefGoogle Scholar
Brandenburger, A. (2010), Origins of epistemic game theory, in Hendricks, V. F. and Roy, O., (eds.), Epistemic Logic: 5 Questions, Automatic Press, VIP.Google Scholar
Brandenburger, A. (2014), The Language of Game Theory: Putting Epistemics into the Mathematics of Games, World Scientific Series in Economic Theory, Volume 5.CrossRefGoogle Scholar
Brandenburger, A. and Dekel, E. (1987), Rationalizability and correlated equilibria, Econometrica 55, 13911402.10.2307/1913562CrossRefGoogle Scholar
Brandenburger, A. and Dekel, E. (1989), The role of common knowledge assumptions in game theory, in Hahn, Frank (ed.), The Economics of Missing Markets, Information and Games, Oxford: Oxford University Press, pp. 4661.Google Scholar
Brandenburger, A. and Dekel, E. (1993), Hierarchies of beliefs and common knowledge, Journal of Economic Theory 59, 189198.10.1006/jeth.1993.1012CrossRefGoogle Scholar
Brandenburger, A. and Friedenberg, A. (2008), Intrinsic correlation in games, Journal of Economic Theory 141, 2867.10.1016/j.jet.2007.09.012CrossRefGoogle Scholar
Cappelletti, G. (2010), A note on rationalizability and restrictions on beliefs, The B.E. Journal of Theoretical Economics 10, 111.10.2202/1935-1704.1676CrossRefGoogle Scholar
Chen, J. and Micali, S. (2013), The order independence of iterated dominance in extensive games, Theoretical Economics 8, 125163.10.3982/TE942CrossRefGoogle Scholar
Čopič, J. and Galeotti, A. (2006), Awareness as an equilibrium notion: Normal-form games, Working paper.Google Scholar
Dekel, E., Fudenberg, D. and Morris, S. (2007), Interim correlated rationalizability, Theoretical Economics 2, 1540.Google Scholar
Dekel, E. and Gul, F. (1997), Rationality and knowledge in game theory, in Kreps, D. M. and Wallis, K. F. (eds.), Advances in Economics and Econometrics: Theory and Applications (Seventh World Congress, Vol. 1, 1997), pp. 87172.10.1017/CCOL521580110.005CrossRefGoogle Scholar
Dekel, E., Lipman, B. L. and Rustichini, A. (1998), Standard state-space models preclude unawareness, Econometrica 66, 159173.10.2307/2998545CrossRefGoogle Scholar
Dekel, E. and Siniscalchi, M. (2015), Epistemic game theory, in Young, P. and Zamir, S. (eds.), Handbook of Game Theory, Volume 4, North-Holland.Google Scholar
Dekel, E. and Wolinsky, A. (2003), Rationalizable outcomes of large private-value first-price discrete auctions, Games and Economic Behavior 43, 175188.10.1016/S0899-8256(03)00016-2CrossRefGoogle Scholar
Ely, J. C. and Peşki, M. (2006), Hierarchies of belief and interim rationalizability, Theoretical Economics 1, 1965.Google Scholar
Epstein, L. G. and Wang, T., “Beliefs about beliefs” without probabilities, Econometrica 64, 13431373.CrossRefGoogle Scholar
Fagin, R. and Halpern, J. Y. (1988), Belief, awareness and limited reasoning, Artificial Intelligence 34, 3972.10.1016/0004-3702(87)90003-8CrossRefGoogle Scholar
Feinberg, Y. (2000), Characterizing common priors in the form of posteriors, Journal of Economic Theory 91, 127179.10.1006/jeth.1999.2592CrossRefGoogle Scholar
Feinberg, Y. (2004), Subjective reasoning – games with unawareness, Stanford Graduate School of Business, Research Paper No. 1875.10.2139/ssrn.624672CrossRefGoogle Scholar
Feinberg, Y. (2021), Games with unawareness, The B. E. Journal of Theoretical Economics 21, 433488.10.1515/bejte-2018-0186CrossRefGoogle Scholar
Forges, F. (1986), An approach to communication equilibria, Econometrica 54, 159182.10.2307/1914304CrossRefGoogle Scholar
Forges, F. (1993), Five legitimate definitions of correlated equilibrium in games with incomplete information, Theory and Decision 35, 277310.10.1007/BF01075202CrossRefGoogle Scholar
Friedell, M. F. (1967), On the structure of shared awareness, Working paper, University of Michigan.Google Scholar
Friedell, M. F. (1969), On the structure of shared awareness, Behavioral Science 14, 2839.10.1002/bs.3830140105CrossRefGoogle Scholar
Geanakoplos, J. (1992), Common knowledge, Journal of Economic Perspectives 6, 5283.10.1257/jep.6.4.53CrossRefGoogle Scholar
Geanakoplos, J. (1996), The hangman’s paradox and Newcomb’s paradox as psychological games, Cowles Foundation Discussion Paper No. 1128.Google Scholar
Geanakoplos, J., Pearce, D. and Stacchetti, E. (1989), Psychological games and sequential rationality, Games and Economic Behavior 1, 6079.10.1016/0899-8256(89)90005-5CrossRefGoogle Scholar
Geanakoplos, J. and Polemarchakis, H. (1982), We can’t disagree forever, Journal of Economic Theory 28, 192200.10.1016/0022-0531(82)90099-0CrossRefGoogle Scholar
Gilboa, I. and Schmeidler, D. (2003), A derivation of expected utility maximization in the context of a game, Games and Economic Behavior 44, 184194.10.1016/S0899-8256(03)00015-0CrossRefGoogle Scholar
Gilboa, I., Kalai, E. and Zemel, E. (1990), On the order of eliminating dominated strategies, Operations Research Letters 9, 8589.10.1016/0167-6377(90)90046-8CrossRefGoogle Scholar
Grant, S. and Quiggin, J. (2013), Inductive reasoning about unawareness, Economic Theory 54, 717755.10.1007/s00199-012-0734-yCrossRefGoogle Scholar
Guarino, P. (2020), An epistemic analysis of dynamic games with unawareness, Games and Economic Behavior 120, 257288.10.1016/j.geb.2019.10.006CrossRefGoogle Scholar
Gul, F. (1998), A comment on Aumann’s bayesian view, Econometrica 66, 923927.10.2307/2999578CrossRefGoogle Scholar
Halpern, J. Y. (2001), Alternative semantics for unawareness, Games and Economic Behavior 37, 321339.10.1006/game.2000.0832CrossRefGoogle Scholar
Halpern, J. Y. and Rêgo, L. C. (2008), Interactive unawareness revisited, Games and Economic Behavior 62, 232262.10.1016/j.geb.2007.01.012CrossRefGoogle Scholar
Halpern, J. Y. and Rêgo, L. C. (2014), Extensive games with possibly unaware players, Mathematical Social Sciences 70, 4258.10.1016/j.mathsocsci.2012.11.002CrossRefGoogle Scholar
Harsanyi, J. C. (1962), Bargaining in ignorance of the opponent’s utility function, Journal of Conflict Resolution 6, 2938.10.1177/002200276200600104CrossRefGoogle Scholar
Harsanyi, J. C. (1967–1968), Games with incomplete information played by “bayesian” players, I–III, Management Science 14, 159–182, 320–334, 486502.10.1287/mnsc.14.7.486CrossRefGoogle Scholar
Heifetz, A. (1993), The Bayesian formulation of incomplete information - The non-compact case, International Journal of Game Theory 21, 329338.10.1007/BF01240148CrossRefGoogle Scholar
Heifetz, A., Meier, M. and Schipper, B. C. (2006), Interactive unawareness, Journal of Economic Theory 130, 7894.10.1016/j.jet.2005.02.007CrossRefGoogle Scholar
Heifetz, A., Meier, M. and Schipper, B. C. (2008), A canonical model for interactive unawareness, Games and Economic Behavior 62, 304324.10.1016/j.geb.2007.07.003CrossRefGoogle Scholar
Heifetz, A., Meier, M. and Schipper, B. C. (2013a), Unawareness, beliefs, and speculative trade, Games and Economic Behavior 77, 100121.10.1016/j.geb.2012.09.003CrossRefGoogle Scholar
Heifetz, A., Meier, M. and Schipper, B. C. (2013b), Dynamic unawareness and rationalizable behavior, Games and Economic Behavior 81, 5068.10.1016/j.geb.2013.04.003CrossRefGoogle Scholar
Heifetz, A. and Samet, D. (1998), Topology-free typology of beliefs, Journal of Economic Theory 82, 324341.10.1006/jeth.1998.2435CrossRefGoogle Scholar
Hellman, Z. (2013), Almost common priors, International Journal of Game Theory 42, 399410.10.1007/s00182-012-0347-5CrossRefGoogle Scholar
Jagau, S. (2022), Additive context-dependent preferences, Manuscript.Google Scholar
Jagau, S. and Perea, A. (2022), Common belief in rationality in psychological games: Belief-dependent utility and the limits of strategic reasoning, Journal of Mathematical Economics 100, DOI: 10.1016/j.jmateco.2022.102635.10.1016/j.jmateco.2022.102635CrossRefGoogle Scholar
Jagau, S. and Perea, A. (2023), Linear psychological games. Manuscript.Google Scholar
Kakutani, S. (1941), A generalization of Brouwer’s fixed point theorem, Duke Mathematical Journal 8, 457459.10.1215/S0012-7094-41-00838-4CrossRefGoogle Scholar
Kreps, D. M. and Wilson, R. (1982), Sequential equilibria, Econometrica 50, 863894.10.2307/1912767CrossRefGoogle Scholar
Kripke, S. (1963), A semantical analysis of modal logic I: Normal modal propositional calculi, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9, 6796.10.1002/malq.19630090502CrossRefGoogle Scholar
Leonard, R. (2010), Von Neumann, Morgenstern, and the Creation of Game Theory, Cambridge University Press, Cambridge.10.1017/CBO9780511778278CrossRefGoogle Scholar
Lewis, D. K. (1969), Convention, Harvard University Press, Cambridge.Google Scholar
Li, J. (2009), Information structures with unawareness, Journal of Economic Theory 144, 977993.10.1016/j.jet.2008.10.001CrossRefGoogle Scholar
Luo, X., Qian, X. and Qu, C. (2020), Iterated elimination procedures, Economic Theory 70, 437465.10.1007/s00199-019-01215-6CrossRefGoogle Scholar
Manili, J. (2023), Order independence for rationalizability, Manuscript.10.2139/ssrn.4529227CrossRefGoogle Scholar
Meier, M. and Schipper, B. C. (2014), Bayesian games with unawareness and unawareness perfection, Economic Theory 56, 219249.10.1007/s00199-013-0788-5CrossRefGoogle Scholar
Mertens, J.-F. and Zamir, S. (1985), Formulation of bayesian analysis for games with incomplete information, International Journal of Game Theory 14, 129.10.1007/BF01770224CrossRefGoogle Scholar
Milgrom, P. and Stokey, N. (1982), Information, trade and common knowledge, Journal of Economic Theory 26, 1727.10.1016/0022-0531(82)90046-1CrossRefGoogle Scholar
Modica, S. and Rustichini, A. (1999), Unawareness and partitional information structures, Games and Economic Behavior 27, 265298.10.1006/game.1998.0666CrossRefGoogle Scholar
Monderer, D. and Samet, D. (1989), Approximating common knowledge with common beliefs, Games and Economic Behavior 1, 170190.10.1016/0899-8256(89)90017-1CrossRefGoogle Scholar
Morgenstern, O. (1935), Vollkommene Voraussicht und wirtschaftliches Gleichgewicht, Zeitschrift für Nationalökonomie 6, 337357. (Reprinted as “Perfect foresight and economic equilibrium” in Schotter, A. (ed.), Selected Economic Writings of Oskar Morgenstern, New York University Press, 1976, pp. 169–183).10.1007/BF01311642CrossRefGoogle Scholar
Morris, S. (1994), Trade with heterogeneous prior beliefs and asymmetric information, Econometrica 62, 13271347.10.2307/2951751CrossRefGoogle Scholar
Morris, S. (1995), The common prior assumption in economic theory, Economics and Philosophy 11, 227253.10.1017/S0266267100003382CrossRefGoogle Scholar
Mourmans, N. (2017), Reasoning about the surprise exam paradox: An application of psychological game theory, EPICENTER Working Paper No. 12.Google Scholar
Mourmans, N. (2019), Reasoning in psychological games: When is iterated elimination of choices enough?, EPICENTER Working Paper No. 20.Google Scholar
Myerson, R. B. (1978), Refinements of the Nash equilibrium concept, International Journal of Game Theory 7, 7380.10.1007/BF01753236CrossRefGoogle Scholar
Myerson, R. B. (1986), Multistage games with communication, Econometrica 54, 323358.10.2307/1913154CrossRefGoogle Scholar
Nash, J. F. (1950), Equilibrium points in N-person games, Proceedings of the National Academy of Sciences of the United States of America 36, 4849.10.1073/pnas.36.1.48CrossRefGoogle ScholarPubMed
Nash, J. F. (1951), Non-cooperative games, Annals of Mathematics 54, 286295.10.2307/1969529CrossRefGoogle Scholar
Pacuit, E. and Roy, O. (2017), Epistemic foundations of game theory, in Zalta, N. (ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 Edition), https://plato.stanford.edu/archives/sum2017/entries/epistemic-game/.Google Scholar
Pearce, D. G. (1984), Rationalizable strategic behavior and the problem of perfection, Econometrica 52, 10291050.10.2307/1911197CrossRefGoogle Scholar
Perea, A. (2007), A one-person doxastic characterization of Nash strategies, Synthese 158, 251271 (Knowledge, Rationality and Action 341–361).10.1007/s11229-007-9217-2CrossRefGoogle Scholar
Perea, A. (2012), Epistemic Game Theory: Reasoning and Choice, Cambridge University Press, Cambridge.10.1017/CBO9780511844072CrossRefGoogle Scholar
Perea, A. (2014), From classical to epistemic game theory, International Game Theory Review 16, No.1, 1440001.10.1142/S0219198914400015CrossRefGoogle Scholar
Perea, A. (2017), Order independence in dynamic games, Epicenter Working Paper No. 8.Google Scholar
Perea, A. (2018), Why forward induction leads to the backward induction outcome: A new proof for Battigalli’s theorem, Games and Economic Behavior 110, 120138.10.1016/j.geb.2018.04.001CrossRefGoogle Scholar
Perea, A. (2020), A foundation for expected utility in decision problems and games, EPICENTER Working Paper No. 22.Google Scholar
Perea, A. (2021), Epistemic game theory, in Knauff, M. and Spohn, W. (eds.), Handbook of Rationality, MIT Press, Cambridge.Google Scholar
Perea, A. (2022), Common belief in rationality in games with unawareness, Mathematical Social Sciences 119, 1130.10.1016/j.mathsocsci.2022.05.005CrossRefGoogle Scholar
Perea, A. (2025), Expected utility as an expression of linear preference intensity, Theory and Decision, DOI: 10.1007/s11238-025-10024-410.1007/s11238-025-10024-4CrossRefGoogle Scholar
Polak, B. (1999), Epistemic conditions for Nash equilibrium, and common knowledge of rationality, Econometrica 67, 673676.10.1111/1468-0262.00043CrossRefGoogle Scholar
Rêgo, L. C. and Halpern, J. Y. (2012), Generalized solution concepts in games with possibly unaware players, International Journal of Game Theory 41, 131155.10.1007/s00182-011-0276-8CrossRefGoogle Scholar
Robles, J. and Shimoji, M. (2012), On rationalizability and beliefs in discrete private-value firstprice auctions, The B. E. Journal of Theoretical Economics, DOI: 10.1515/1935-1704.182910.1515/1935-1704.1829CrossRefGoogle Scholar
Samet, D. (1990), Ignoring ignorance and agreeing to disagree, Journal of Economic Theory 52, 190207.10.1016/0022-0531(90)90074-TCrossRefGoogle Scholar
Samet, D. (1998a), Common prior and separation of convex sets, Games and Economic Behavior 24, 172174.10.1006/game.1997.0615CrossRefGoogle Scholar
Samet, D. (1998b), Iterated expectations and common priors, Games and Economic Behavior 24, 131141.10.1006/game.1997.0616CrossRefGoogle Scholar
Savage, L. J. (1954), The Foundation of Statistics, Wiley, New York.Google Scholar
Schipper, B. C. (2014), Unawareness – a gentle introduction to both the literature and the special issue, Mathematical Social Sciences 70, 19.10.1016/j.mathsocsci.2014.03.002CrossRefGoogle Scholar
Schipper, B. C. (2021), Discovery and equilibrium in games with unawareness, Journal of Economic Theory 198, 105365.10.1016/j.jet.2021.105365CrossRefGoogle Scholar
Selten, R. (1965), Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit, Zeitschrift für die Gesammte Staatswissenschaft 121, 301–324, 667689.Google Scholar
Selten, R. (1975), Reexamination of the perfectness concept for equilibrium points in extensive games, International Journal of Game Theory 4, 2555.10.1007/BF01766400CrossRefGoogle Scholar
Shimoji, M. (2017), Revenue comparison of discrete private-value auctions via weak dominance, Review of Economic Design 21, 231252.10.1007/s10058-017-0202-zCrossRefGoogle Scholar
Spohn, W. (1982), How to make sense of game theory, in Stegmüller, W., Balzer, W. and Spohn, W. (eds.), Philosophy of Economics, Springer Verlag, pp. 239270.10.1007/978-3-642-68820-1_14CrossRefGoogle Scholar
Tan, T. and Werlang, S. R. C. (1988), The bayesian foundations of solution concepts of games, Journal of Economic Theory 45, 370391.10.1016/0022-0531(88)90276-1CrossRefGoogle Scholar
Tan, T. and Werlang, S. R. C. (1992), On Aumann’s notion of common knowledge: An alternative approach, Revista Brasileira de Economia 64, 151166.Google Scholar
von Neumann, J. (1928), Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100, 295320. (Translated by Bargmann, Sonya as “On the theory of games of strategy” in Tucker, A. W. and Luce, R. D. (eds.) (1959), Contributions to the Theory of Games, Volume IV, Princeton University Press, Princeton, NJ, pp. 13–43 (Annals of Mathematics Studies 40)).10.1007/BF01448847CrossRefGoogle Scholar
von Neumann, J. and Morgenstern, O. (1944, 1947), Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ.Google Scholar
Zermelo, E. (1913), Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, Proceedings Fifth International Congress of Mathematicians 2, 501504.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andrés Perea, Universiteit Maastricht, Netherlands
  • Book: From Decision Theory to Game Theory
  • Online publication: 17 June 2025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andrés Perea, Universiteit Maastricht, Netherlands
  • Book: From Decision Theory to Game Theory
  • Online publication: 17 June 2025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andrés Perea, Universiteit Maastricht, Netherlands
  • Book: From Decision Theory to Game Theory
  • Online publication: 17 June 2025
Available formats
×