Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-04T11:39:50.427Z Has data issue: false hasContentIssue false

6 - Ultrasound Imaging

Published online by Cambridge University Press:  13 July 2017

Paul Suetens
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

Introduction

Ultrasound imaging or ultrasonography has been used in clinical practice for more than half a century. It is noninvasive, relatively inexpensive, portable, and has an excellent temporal resolution. Imaging by means of acoustic waves is not restricted to medical imaging. It is used in several other applications such as in the field of nondestructive testing of materials to check for microscopic cracks in, for example, airplane wings or bridges, in sound navigation ranging (SONAR) to locate fish, in the study of the seabed or to detect submarines, and in seismology to locate gas fields.

The basic principle of ultrasound imaging is simple. A propagating wave partially reflects at the interface between different tissues. If these reflections are measured as a function of time, information is obtained on the position of the tissue if the velocity of the wave in the medium is known. However, besides reflection, other phenomena such as diffraction, refraction, attenuation, dispersion, and scattering appear when ultrasound propagates through matter. All these effects are discussed below.

Ultrasound imaging is used not only to visualize morphology or anatomy but also to visualize function by means of blood and myocardial velocities. The principle of velocity imaging was originally based on the Doppler effect and is therefore often referred to as Doppler imaging. A well-known example of the Doppler effect is the sudden pitch change of a whistling train when passing a static observer. Based on the observed pitch change, the velocity of the train can be calculated.

Historically, the first practical realization of ultrasound imaging was born during World War I in the quest for detecting submarines. Relatively soon these attempts were followed by echographic techniques adapted to industrial applications for nondestructive testing of metals. Essential to these developments were the publication of The Theory of Sound by Lord Rayleigh in 1877 and the discovery of the piezoelectric effect by Pierre Curie in 1880, which enabled easy generation and detection of ultrasonic waves. The first use of ultrasound as a diagnostic tool dates back to 1942 when two Austrian brothers used transmission of ultrasound through the brain to locate tumors. In 1949, the first pulse-echo system was described, and during the 1950s 2D gray scale images were produced.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Ultrasound Imaging
  • Paul Suetens, Katholieke Universiteit Leuven, Belgium
  • Book: Fundamentals of Medical Imaging
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316671849.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Ultrasound Imaging
  • Paul Suetens, Katholieke Universiteit Leuven, Belgium
  • Book: Fundamentals of Medical Imaging
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316671849.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Ultrasound Imaging
  • Paul Suetens, Katholieke Universiteit Leuven, Belgium
  • Book: Fundamentals of Medical Imaging
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316671849.007
Available formats
×