Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T11:10:06.378Z Has data issue: false hasContentIssue false

4 - Scheduling

Published online by Cambridge University Press:  05 March 2016

Guowang Miao
Affiliation:
KTH Royal Institute of Technology, Stockholm
Jens Zander
Affiliation:
KTH Royal Institute of Technology, Stockholm
Ki Won Sung
Affiliation:
KTH Royal Institute of Technology, Stockholm
Slimane Ben Slimane
Affiliation:
KTH Royal Institute of Technology, Stockholm
Get access

Summary

Introduction

Wireless communications are evolving from analog, small-capacity, voice services to digital, large-capacity, data services. Nowadays wireless systems should be designed to accommodate many new requirements. For example, wireless networks should be capable of providing high data rates so that terminals can receive broadband services with fast response times. Wireless networks should also have a flexible service architecture to integrate different types of services on a single air interface because terminals have different service requirements. If the network is optimized only for one type of service, other types will experience poor service quality. On top of the flexible service architecture, effective QoS management schemes are also needed. This is because QoS metrics differ among different applications that may even be of the same type. For example, all video telephony has a strict delay requirement but the detailed parameters can be different. When different resolutions of videos are used, the delay requirements of sending each packet would also differ, as would the rate requirements.

The requirements of all terminals can be met easily if there are unlimited wireless resources, e.g. infinite spectrum, infinite transmission power and unlimited antennas, such that each terminal can be allocated whatever resources it desires. In practice this is impossible because of various limitations. The spectrum is allocated by the government and is very limited. Technically it is also difficult to implement devices that support communications over infinite spectrum. The RF transmission power should not exceed government regulations. It is impossible to implement power amplifiers that support infinite power output. In addition there is also the concern of high energy bills. Because of the limits of device dimensions, it is also impossible to use an infinite number of antennas in wireless communications. Therefore, wireless resources need to be shared among all terminals carefully and it is desirable to schedule the usage of wireless resources as efficiently as possible, while maximizing the overall network performance. For example, spectrum bandwidth is a key resource carrying wireless signals and determines the maximum symbol transmission rate. With FDMA, the amount of bandwidth allocated to each terminal limits its channel access rate. In other words, the bandwidth allocation determines the transmission opportunity of each terminal. Similarly, time slots in TDMA and codes in CDMA are all resources that should be scheduled efficiently.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J., Jang and K. B., Lee. 2003 (Feb.). Transmit power adaptation for multiuser OFDM systems. IEEE J. Sel. Areas Commun., 21, 171–178.Google Scholar
N., Jindal, S., Vishwanath and A., Goldsmith. 2004. On the duality of Gaussian multiple-access and broadcast channels. IEEE Trans. Inf. Theory, 50(5), 768–783.Google Scholar
B. G., Lee, D., Park and H., Seo. 2009. Wireless Communications Resource Management. Singapore: John Wiley & Sons (Asia) Pte Ltd.
G. W., Miao and Z., Niu. 2006. Bandwidth management for mixed unicast and multicast multimedia flows with perception based QoS differentiation. Pages 687–692 of: Proc. IEEE ICC 2006.
G. W., Miao and N., Himayat. 2008 (Mar.). Low complexity utility based resource allocation for 802.16 OFDMA systems. Pages 1465–1470 of: Proc. IEEE WCNC 2008.
J., Mo and J., Walrand. 2000. Fair end-to-end window-based congestion control. IEEE/ACM Trans. Networking, 8(5), 556–567.Google Scholar
W., Rhee and J. M., Cioffi. 2000. Increasing in capacity of multiuser OFDM system using dynamic subchannel allocation. Pages 3866–3875 of: Proceedings IEEE Vehicular Technology Conference.
D., Tse and P., Viswanath. 2005. Fundamentals of Wireless Communication. Cambridge: Cambridge University Press.
C. Y., Wong, R. S., Cheng, K. B., Lataief and R. D., Murch. 1999. Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J. Sel. Areas Commun., Oct., 1747–1758.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Scheduling
  • Guowang Miao, KTH Royal Institute of Technology, Stockholm, Jens Zander, KTH Royal Institute of Technology, Stockholm, Ki Won Sung, KTH Royal Institute of Technology, Stockholm, Slimane Ben Slimane, KTH Royal Institute of Technology, Stockholm
  • Book: Fundamentals of Mobile Data Networks
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316534298.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Scheduling
  • Guowang Miao, KTH Royal Institute of Technology, Stockholm, Jens Zander, KTH Royal Institute of Technology, Stockholm, Ki Won Sung, KTH Royal Institute of Technology, Stockholm, Slimane Ben Slimane, KTH Royal Institute of Technology, Stockholm
  • Book: Fundamentals of Mobile Data Networks
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316534298.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Scheduling
  • Guowang Miao, KTH Royal Institute of Technology, Stockholm, Jens Zander, KTH Royal Institute of Technology, Stockholm, Ki Won Sung, KTH Royal Institute of Technology, Stockholm, Slimane Ben Slimane, KTH Royal Institute of Technology, Stockholm
  • Book: Fundamentals of Mobile Data Networks
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316534298.005
Available formats
×