Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-22T12:32:09.399Z Has data issue: false hasContentIssue false

6 - Multiple-object tracking in clutter: random-set-based approach

Published online by Cambridge University Press:  07 September 2011

Subhash Challa
Affiliation:
University of Melbourne
Mark R. Morelande
Affiliation:
University of Melbourne
Darko Mušicki
Affiliation:
Hanyang University, Republic of Korea
Robin J. Evans
Affiliation:
University of Melbourne
Get access

Summary

Typically, multiple-object tracking problems are handled by extending the singleobject tracking algorithms where each object is tracked as an isolated entity. The challenge comes when the targets are close by and there is ambiguity about the origin of the measurement, i.e., which measurements are from which track (in general). Using similar techniques of data association, multiple measurements are assigned to multiple objects (in general). However, such an extension of singleobject trackers to multiple-object trackers assumes that one knows the number of objects present in the surveillance space, which is not true.

This problem leads to some of the serious advances and methods of “data association” logic of these trackers. The data association step calculates the origin of the measurements in a probabilistic manner. It hypothesizes the measurement origin and calculates probabilities for each of the hypotheses. For example, a single-object tracking algorithm considers two hypotheses under measurement origin uncertainty – “the measurement is from an object of interest” or “the measurement is from clutter.” Such algorithms ignore the possibility of the measurements originating from other objects. This problem is partially solved by introducing the hypothesis “the measurement is from the ith (out of N) objects.” But setting the number of objects to a specific value is a limitation by itself. Moreover, this approach does not provide any measure for the validity of the number of objects. Multi-object trackers need to estimate the number of objects and their individual states jointly.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×