Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-22T11:27:25.856Z Has data issue: false hasContentIssue false

4 - Single-object tracking in clutter

Published online by Cambridge University Press:  07 September 2011

Subhash Challa
Affiliation:
University of Melbourne
Mark R. Morelande
Affiliation:
University of Melbourne
Darko Mušicki
Affiliation:
Hanyang University, Republic of Korea
Robin J. Evans
Affiliation:
University of Melbourne
Get access

Summary

In Chapters 2 and 3, we introduced state estimation and filtering theory and its application to idealistic object tracking problems. The fact that makes practical object tracking problems both challenging and interesting is that the sensor measurements, more often than not, contain detections from false targets. For example, in many radar and sonar applications, measurements (detections) originate not only from objects of interest, but also from thermal noise, terrain reflections, clouds, etc. Such unwanted measurements are usually termed clutter. In vision-based object tracking, where tracking can be used to count moving targets, shadows created by an afternoon sun, light reflections on snow or the movement of leaves on a tree can all generate clutter data in the images.

One of the defining characteristics of clutter or false alarms is that their number changes from one time instant to the next in a random manner and, to make matters worse, target- and clutter-originated measurements share the same measurement space and look alike. Practical tracking problems are considerably difficult since sometimes, even when there are targets in the sensor's field of view, they can go undetected or fail to appear in the set of measurements. In other words, true measurements from the target are present during each measurement scan with only a certain probability of detection. Hence, determining the state of the object using a combination of false alarms and true target returns is at the heart of all practical object tracking problems and is the subject of this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×