Skip to main content Accesibility Help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 19
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Akroume, Emila Maillard, François Bach, Cyrille Hossann, Christian Brechet, Claude Angeli, Nicolas Zeller, Bernhard Saint-André, Laurent and Buée, Marc 2018. First evidences that the ectomycorrhizal fungus Paxillus involutus mobilizes nitrogen and carbon from saprotrophic fungus necromass. Environmental Microbiology,

    Kirker, Grant T 2018. eLS. p. 1.

    Balasundaram, S. V. Hess, J. Durling, M. B. Moody, S. C. Thorbek, L. Progida, C. LaButti, K. Aerts, A. Barry, K. Grigoriev, I. V. Boddy, L. Högberg, N. Kauserud, H. Eastwood, D. C. and Skrede, I. 2018. The fungus that came in from the cold: dry rot’s pre-adapted ability to invade buildings. The ISME Journal, Vol. 12, Issue. 3, p. 791.

    Filipiak, Michał 2018. Saproxylic Insects. Vol. 1, Issue. , p. 429.

    Myer, Angela and Forschler, Brian T. 2018. Evidence for the Role of Subterranean Termites (Reticulitermes spp.) in Temperate Forest Soil Nutrient Cycling. Ecosystems,

    Hiscox, Jennifer Savoury, Melanie Toledo, Selin Kingscott-Edmunds, James Bettridge, Aimee Waili, Nasra Al and Boddy, Lynne 2017. Threesomes destabilise certain relationships: multispecies interactions between wood decay fungi in natural resources. FEMS Microbiology Ecology, Vol. 93, Issue. 3,

    Filipiak, Michał and Weiner, January 2017. Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiological Entomology, Vol. 42, Issue. 1, p. 73.

    Rinne, Katja T. Rajala, Tiina Peltoniemi, Krista Chen, Janet Smolander, Aino Mäkipää, Raisa and Treseder, Kathleen 2017. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Functional Ecology, Vol. 31, Issue. 2, p. 530.

    Johnston, Sarah R. Boddy, Lynne Weightman, Andrew J. and Muyzer, Gerard 2016. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiology Ecology, Vol. 92, Issue. 11, p. fiw179.

    Mukhin, V. A. Patova, E. N. Kiseleva, I. S. Neustroeva, N. V. and Novakovskaya, I. V. 2016. Mycetobiont symbiotic algae of wood-decomposing fungi. Russian Journal of Ecology, Vol. 47, Issue. 2, p. 133.

    Mukhin, V. A. Voronin, P. Yu. Velivetskaya, T. A. and Ignat’ev, A. V. 2014. Stable nitrogen isotope ratio in wood substrates and xylotrophic fungi in forest ecosystems of Western Siberia. Russian Journal of Ecology, Vol. 45, Issue. 6, p. 539.

    Purahong, Witoon Kahl, Tiemo Schloter, Michael Bauhus, Jürgen Buscot, François and Krüger, Dirk 2014. Comparing fungal richness and community composition in coarse woody debris in Central European beech forests under three types of management. Mycological Progress, Vol. 13, Issue. 3, p. 959.

    Darrah, P. R. and Fricker, M. D. 2014. Foraging by a wood-decomposing fungus is ecologically adaptive. Environmental Microbiology, Vol. 16, Issue. 1, p. 118.

    Weißhaupt, Petra Naumann, Annette Pritzkow, Wolfgang and Noll, Matthias 2013. Nitrogen uptake of Hypholoma fasciculare and coexisting bacteria. Mycological Progress, Vol. 12, Issue. 2, p. 283.

    Brais, Suzanne and Drouin, Pascal 2012. Interactions between deadwood and soil characteristics in a natural boreal trembling aspen – jack pine stand1This article is one of a selection of papers from the International Symposium on Dynamics and Ecological Services of Deadwood in Forest Ecosystems.. Canadian Journal of Forest Research, Vol. 42, Issue. 8, p. 1456.

    Shortle, Walter C. Smith, Kevin T. Jellison, Jody and Schilling, Jonathan S. 2012. Potential of decaying wood to restore root-available base cations in depleted forest soils. Canadian Journal of Forest Research, Vol. 42, Issue. 6, p. 1015.

    Bebber, Daniel P. Watkinson, Sarah C. Boddy, Lynne and Darrah, Peter R. 2011. Simulated nitrogen deposition affects wood decomposition by cord-forming fungi. Oecologia, Vol. 167, Issue. 4, p. 1177.

    Boddy, Lynne Hynes, Juliet Bebber, Daniel P. and Fricker, Mark D. 2009. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience, Vol. 50, Issue. 1, p. 9.

    Bebber, Daniel P Hynes, Juliet Darrah, Peter R Boddy, Lynne and Fricker, Mark D 2007. Biological solutions to transport network design. Proceedings of the Royal Society B: Biological Sciences, Vol. 274, Issue. 1623, p. 2307.

  • Print publication year: 2006
  • Online publication date: December 2009

7 - The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor

    • By Sarah Watkinson, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK, Dan Bebber, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK, Peter Darrah, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK, Mark Fricker, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK, Monika Tlalka, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK, Lynne Boddy, Cardiff School of Biosciences, Cardiff University, Main Building Park Place, Cardiff CF10 3TL, UK
  • Edited by Geoffrey Michael Gadd, University of Dundee
  • Publisher: Cambridge University Press
  • pp 151-181


The mycelium of woodland fungi can act both as a reservoir and as a distribution system for nutrients, owing to its physiological and developmental adaptations to life at the interface between organic and mineral soil horizons. The mobility of accumulated nitrogen and phosphorus within the mycelial networks of cord-forming wood decay fungi and ectomycorrhiza enables fungi to play key roles as wood decomposers and root symbionts. The dynamics of nitrogen movement have been less investigated than phosphorus owing to lack of a suitable tracer. We have developed a new technique for tracing nitrogen translocation in real time, using 14C as a marker for nitrogen by incorporating it into a non-decomposed amino acid that tracks the mycelial free amino acid pool. Its movement can be imaged by counting photon emissions from a scintillant screen in contact with the mycelial system. This method allows real-time imaging at high temporal and spatial resolution, for periods of weeks and areas up to 1 m2, in microcosms that mimic the mineral/organic soil interface of the forest floor. The results reveal a hitherto unsuspected dynamism and responsiveness in amino acid flows through mycelial networks of cord-forming, wood-decomposing basidiomycetes. We interpret these in the light of current understanding of the pivotal role of fungi in boreal and temperate forest floor nutrient cycling, and attempt to formulate key questions to investigate the effects of mycelial nitrogen translocation on forest floor decomposition and nitrogen absorption.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Fungi in Biogeochemical Cycles
  • Online ISBN: 9780511550522
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution, 7, 220–3.
Aber, J. D. & Magill, A. H. (2004). Chronic nitrogen additions at the Harvard Forest (USA): the first 15 years of a nitrogen saturation experiment. Forest Ecology and Management, 196, 1–5.
Aber, J. P. & Melillo, J. M. (1982). Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Canadian Journal of Botany, 60, 2263–9.
Agerer, R. (2001). Exploration types of ectomycorrhizae. Mycorrhiza, 11, 107–14.
Anderson, J. M., Ineson, P. & Huish, S. A. (1983). Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands. Soil Biology and Biochemistry, 15, 463–7.
Arnolds, E. J. M. (1997). Biogeography and conservation. In The Mycota, vol. IV. Environmental and Microbial Relationships, ed. Wicklow, D. T. & Söderström, B., Berlin: Springer-Verlag, pp. 115–31.
Bååth, E. & Söderström, B. (1979). Fungal biomass and fungal immobilisation of plant nutrients in Swedish coniferous forest soils. Revue d'Ecologie et de Biologie du Sol, 16, 477–89.
Bago, B., Pfeffer, P. & Shachar-Hill, Y. (2001). Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis?New Phytologist, 149, 4–8.
Barron, G. L. (1992). Ligninolytic and cellulolytic fungi as predators and parasites. In The Fungal Community: Its Organization and Role in the Ecosystem, ed. Carroll, G. C. & Wicklow, D. J.. New York: Marcel Dekker, pp. 311–54.
Beare, M. H., Parmelee, R. W., Hendrix, P. al. (1992). Microbial and faunal interactions and effects on litter nitrogen and decomposition in ecosystems. Ecological Monographs, 62, 569–91.
Bending, G. D. & Read, D. J. (1995). The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytologist, 130, 401–9.
Berntson, G. M. & Aber, J. D. (2000). Fast nitrate immobilisation in nitrogen saturated temperate forest soils. Soil Biology and Biochemistry, 32, 151–6.
Blagodatskaya, E. & Anderson, T. H. (1998). Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and Q CO2 of microbial communities in forest soils. Soil Biology and Biochemistry, 30, 1269–74.
Boddy, L. (1993). Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycological Research, 97, 641–55.
Boddy, L. (1999). Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia, 91, 13–32.
Boddy, L. & Watkinson, S. C. (1995). Wood decomposition, higher fungi, and their role in nutrient redistribution. Canadian Journal of Botany, 73 (Suppl.1), S1377–83.
Boswell, G. P., Jacobs, H., Davidson, F. A., Gadd, G. M. & Ritz, K. (2002). Functional consequences of nutrient translocation in mycelial fungi. Journal of Theoretical Biology, 217, 459–77.
Bringmark, L. (1980). Ion leaching through a podsol in a Scots pine stand. In Ecological Bulletin, Vol. 32. Structure and Function of Northern Coniferous Forests – an Ecosystem Study, ed. T. Persson, pp. 357–61.
Caddick, M. X. (2002). What's for dinner – what shall I choose?Microbiology Today, 29, 132–4.
Caddick, M. X. (2004). Nitrogen regulation in mycelial fungi. In The Mycota, Vol. III. Biochemistry and Molecular Biology, 2nd en, ed. Brambl, R. & Marzluf, G. A.. Berlin: Springer-Verlag, pp. 349–68.
Cain, M. L., Subler, S., Evans, J. P. & Fortin, M.-S. (1999). Sampling spatial and temporal variation in soil nitrogen availability. Oecologia, 118, 397–404.
Cairney, J. W. G. (1992). Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycological Research, 96, 135–41.
Cairney, J. W. G., Jennings, D. H. & Veltkamp, C. J. (1989). A scanning electron microscope study of the internal structure of mature linear mycelial organs of four basidiomycete species. Canadian Journal of Botany, 67, 2266–71.
Carreiro, M. M., Sinsabaugh, R. L., Reperet, D. A. & Parkhurst, D. F. (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359–65.
Cooper, T. G. (1996). Regulation of allantoin metabolism in Saccharomyces cerevisiae. In The Mycota, Vol. III. Biochemistry and Molecular Biology, ed. Brambl, R. & Marzluf, G. A., Heidelberg: Springer-Verlag, pp. 139–69.
Cooper, T. G. (2004). Integrated regulation of the nitrogen-carbon interface. In: Topics in Current Genetics, Vol. 7. Nutrient-induced Responses in Eukaryotic Cells, ed. Winderickx, J. & Taylor, P. M.. Berlin: Springer-Verlag, pp. 225–57.
Cromack, K. & Caldwell, B. A. (1992). The role of fungi in litter decomposition and nutrient cycling. In The Fungal Community: Its Organization and Role in the Ecosystem, ed. Carroll, G. C. & Wicklow, D. J.. New York: Marcel Dekker, pp. 653–68.
Currie, W. S. (1999). The responsive C and N biogeochemistry of the temperate forest floor. Trends in Ecology and Evolution 14, 316–20.
Currie, W. S., Nadelhoffer, K. J. & Aber, J. D. (1999). Soil detrital processes controlling the movement of 15N tracers to forest vegetation. Ecological Applications, 9, 87–102.
Dafodu, W. (2003). The British Survey of Fertilizer Practice. London: Crown Publications.
Davidson, E. A., Hart, S. C. & Firestone, K. (1992). Internal cycling of nitrate in soils of a mature coniferous forest. Ecology, 73, 1148–56.
Davidson, F. A. & Olsson, S. (2000). Translocation induced outgrowth of fungi in nutrient-free environments. Journal of Theoretical Biology, 205, 73–84.
Davis, R. H. (1996). Polyamines in fungi. In The Mycota, Vol. III. Biochemistry and Molecular Biology, ed. Brambl, R. & Marzluf, G. A.. Heidelberg: Springer-Verlag, pp. 347–56.
Dighton, J. (1997). Nutrient cycling by saprotrophic fungi in terrestrial habitats. In The Mycota, Vol. IV. Environmental and Microbial Relationships, ed. Wicklow, D. W. & Söderström, B.. Berlin: Springer-Verlag, pp. 271–93.
Dighton, J. (2003). Fungi in Ecosystem Processes. New York: Marcel Dekker.
Dighton, J. & Boddy, L. (1989). Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems. In Nitrogen, Phosphorus and Sulphur Utilization by Fungi, ed. Boddy, L., Marchant, R. & Read, D. J.. Cambridge: Cambridge University Press, pp. 269–98.
Dixon, R. K., Brown, S., Houghton, R. al. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–90.
Downs, M. R., Nadelhoffer, K. J., Melillo, J. M. & Aber, J. D. (1996). Immobilization of a 15N-labelled nitrate addition by decomposing forest litter. Oecologia, 105, 141–50.
Ettema, C. H. & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology and Evolution 17, 177–83.
Falkowski, P., Scholes, R. J., Boyle, al. (2000). The global carbon cycle: a test of our knowledge of Earth as a system. Science, 290, 291–6.
Fenn, M. E., Poth, M. A., Aber, J. al. (1997). Nitrogen excess in North American Ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706–33.
Frankland, J. C. (1982). Biomass and nutrient cycling by decomposer basidiomycetes. In Decomposer Basidiomycetes: Their Biology and Ecology, ed. Frankand, J. C., Hedger, J. N. & Swift, M. J.. Cambridge: Cambridge University Press, pp. 241–61.
Frey, S. D., Elliott, E. T., Paustian, K. & Peterson, G. A. (2000). Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology and Biochemistry, 32, 689–98.
Frey, S. D., Six, J. & Elliott, E. T. (2003). Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biology and Biochemistry, 35, 1001–4.
Fricker, M. D., Bebber, D., Tlalka, M. et al. (2005). Inspiration from microbes: from patterns to networks. In Complex Systems and Inter-Disciplinary Science, ed. Arthur, B. W., Axtell, R., Bornholdt, al. London: World Scientific Publishing Co., (in press).
Galloway, J. N., Aber, J. D., Erisman, J. al. (2003). The nitrogen cascade. Bioscience, 53, 341–56.
Govindarajulu, M., Pfeffer, P. E., Jin, al. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819–23.
Griffin, D. H. (1994). Fungal Physiology, 2nd edn. Chichester: Wiley-Liss.
Guo, D., Mou, P., Jones, R. H. & Mitchell, R. J. (2004). Spatio-temporal patterns of soil available nutrients following experimental disturbance in a pine forest. Oecologia, 138, 613–21.
Hanks, J. N., Hearnes, J. M., Gathman, A. C. & Lilly, W. W. (2003). Nitrogen starvation-induced changes in amino acid and free ammonium pools in Schizophyllum commune colonies. Current Microbiology, 47, 444–449.
Harmon, M. E., Franklin, J. F., Swanson, F. al. (1986). Ecology of coarse woody debris in temperate ecosystems. Recent Advances in Ecological Research, 15, 133–302.
Hart, S. C. & Firestone, M. K. (1991). Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest. Biogeochemistry, 12, 103–28.
Hart, S. C., Nason, G. E., Myrold, D. D. & Perry, D. A. (1994). Dynamics of gross nitrogen transformations in an old growth forest: the carbon connection. Ecology, 75, 880–91.
Heal, O. W. & Dighton, J. (1986). Nutrient cycling and decomposition in natural terrestrial ecosystems. In Microfloral and Faunal Interactions, ed. Mitchell, M. J. & Nakas, J. P.. Dordrecht: Martin Nijhoff/Dr W Junk, pp. 14–73.
Hibbett, D. S., Gilbert, L. B. & Donoghue, M. J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506–8.
Hirobe, M., Koba, K. & Tokuchi, N. (2003). Dynamics of the internal soil nitrogen cycles under moder and mull forest floor types on a slope in a Cryptomeria japonica D. Don plantation. Ecological Research, 18, 5–64.
Hobbie, E. A., Macko, S. A. & Shugart, H. H. (1999). Insights into carbon and nitrogen dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia, 118, 353–60.
Hodge, A., Robinson, D. & Fitter, A. (2000). Are micro-organisms more effective than plants at competing for nitrogen?Trends in Plant Science, 5, 304–8.
Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A. & Gadd, G. M. (2002). Solubilisation of calcium phosphate as a consequence of carbon translocation in Rhizoctonia solani. FEMS Microbiology Ecology, 40, 65–71.
Jennings, D. H. (1987). The translocation of solutes in fungi. Biological Reviews, 62, 215–43.
Jennings, D. H. (1995). The Physiology of Fungal Nutrition. Cambridge: Cambridge University Press.
Kaye, J. P. & Hart, S. C. (1997). Competition for nitrogen between plants and soil micro-organisms. Trends in Ecology and Evolution, 12, 139–43.
Keyser, P., Kirk, T. K. & Zeykus, I. G. (1978). Ligninolytic system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of Bacteriology, 135, 790–7.
Kingsnorth, C. S., Eastwood, D. C. & Burton, K. S. (2001). Cloning and post-harvest expression of serine proteinase transcripts in the cultivated mushroom Agaricus bisporus. Fungal Genetics and Biology, 32, 135–44.
Kirk, T. K. & Fenn, P. (1982). Formation and action of the ligninolytic system in basidiomycetes. In: Decomposer Basidiomycetes, ed. Frankland, J. C., Hedger, J. N. & Swift, M. J. Cambridge: Cambridge University Press, pp. 67–90.
Klionsky, D. J., Herman, P. K. & Emr, S. D. (1990). The fungal vacuole: composition, function and biogenesis. Microbiological Reviews, 54, 226–92.
Klironomos, J. N. & Hart, H. H. (2001). Animal nitrogen swap for plant carbon. Nature, 410, 651–2.
Korsaeth, A., Molstad, L. & Bakken, L. R. (2001). Modelling the competition for nitrogen between plants and microflora as a function of soil heterogeneity. Soil Biology and Biochemistry, 33, 215–26.
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–7.
Leake, J., Johnson, D., Donnelly, D. & Boddy, L. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Canadian Journal of Botany, 82, 1016–45.
Levi, M. P. & Cowling, E. B. (1969). Role of nitrogen in wood deterioration. VII. Physiological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen. Phytopathology, 59, 460–8.
Lilly, W. W., Wallweber, G. J. & Higgins, S. M. (1991). Proteolysis and amino acid recycling during nitrogen deprivation in Schizophyllum commune. Current Microbiology, 23, 27–32.
Lindahl, B., Stenlid, J., Olsson, S. & Finlay, R. (1999). Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist, 144, 183–93.
Lindahl, B. O., Finlay, R. D. & Olsson, S. (2001). Simultaneous, bidirectional translocation of 32P and 33P between wood blocks connected by mycelial cords of Hypholoma fasciculare. New Phytologist, 150, 189–94.
Lindahl, B. O., Taylor, A. F. S. & Finlay, R. D. (2002). Defining nutritional constraints on carbon cycling in boreal forests – towards a less ‘phytocentric’ perspective. Plant and Soil, 242, 123–35.
Lodge, D. J. (1993). Nutrient cycling by fungi in wet tropical ecosystems. In Aspects of Tropical Mycology, ed. Isaac, S., Frankland, J. C., Watling, R. & Whalley, A. J. S.. Cambridge: Cambridge University Press, pp 37–57.
Lodge, D. J. & Asbury, C. E. (1988). Basidiomycetes reduce export of organic matter from forest slopes. Mycologia, 80, 888–90.
Magill, A. H., Aber, J. D., Berntson, G. al. (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3, 238–53.
Maraun, M., Martens, H., Migge, S., Theenhaus, A. & Scheu, S. (2003). Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. European Journal of Soil Biology, 39, 85–95.
Markkola, A. M., Ohtonen, R., Tarvainen, O. & Ahonen-Jonnarth, U. (1995). Estimates of fungal biomass in Scots pine stands on an urban pollution gradient. New Phytologist, 131, 139–47.
Marzluf, G. A. (1996). Regulation of nitrogen metabolism in mycelial fungi. In: The Mycota, Vol. III. Biochemistry and Molecular Biology, ed. Brambl, R. & Marzluf, G. A.. Berlin: Springer-Verlag, pp. 357–68.
Merrill, W. & Cowling, E. B. (1966). The role of nitrogen in wood deterioration: amount and distribution of nitrogen in tree stems. Phytopathology, 56, 1085–90.
Micks, P., Downs, M. R., Magill, A. H., Nadelhoffer, K. J. & Aber, J. D. (2004). Decomposing litter as a sink for 15N-enriched additions to an oak and red pine plantation. Forest Ecology and Management, 196, 71–87.
Miller, R. M. & Lodge, D. J. (1997). Fungal responses to disturbance: agriculture and forestry. In The Mycota, Vol. IV. Environmental and Microbial Relationships, ed. Wicklow, D. T. & Söderström, B.. Berlin: Springer-Verlag, pp. 65–84.
Nasholm, T., Ekblad, A., Nordin, al. (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914–16.
Neff, J. C., Townsend, A. R., Gleixner, G., Lehmann, S. J., Turnbull, J. & Bowman, W. D. (2002). Variable effects of nitrogen addition on the stability and turnover of carbon. Nature, 419, 915–17.
Northup, R. R., Yu, Z., Dahlgren, R. A. & Vogt, K. A. (1995). Polyphenol control of nitrogen release from plant litter. Nature, 377, 227–9.
Olsson, S. (2001). Colonial growth of fungi. In The Mycota, Vol. VIII. Biology of the Fungal Cell, ed. Howard, R. J & Gow, N. A. R.. Berlin: Springer-Verlag, pp. 125–41.
Olsson, S. (2002). Continuous imaging in fungi. New Phytologist, 152, 6–7.
Olsson, S. & Gray, S. N. (1998). Patterns and dynamics of 32P phosphate and 14C labelled AIB translocation in intact basidiomycete mycelia. FEMS Microbiology Ecology, 26, 109–20.
Olsson, S. & Hansson, B. S. (1995). The action potential-like activity found in fungal mycelium is sensitive to stimulation. Naturwissenschaften, 82, 30–1.
Paustian, K. & Schnurer, J. (1987). Fungal growth response to carbon and nitrogen limitation: application of a model to field and laboratory data. Soil Biology and Biochemistry, 19, 621–9.
Perez-Moreno, J. & Read, D. J. (2000). Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist, 145, 301–9.
Perez-Moreno, J. & Read, D. J. (2001a). Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network. Plant, Cell and Environment, 24, 1219–26.
Perez-Moreno, J. & Read, D. J. (2001b). Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient recycling in boreal forests. Proceedings of the Royal Society London B, 268, 1329–55.
Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–9.
Rayner, A. D. M. (1991). The challenge of the individualistic mycelium. Mycologia, 83, 48–71.
Rayner, A. D. M. (1994). Pattern generating processes and fungal communities. In Beyond the Biomass: Compositional and Functional Analysis of Microbial Communities, ed. Ritz, K., Dighton, J. & Giller, K. E.. Chichester: John Wiley, pp. 247–58.
Rayner, A. D. M. & Boddy, L. (1988). Fungal Decomposition of Wood: its Biology and Ecology. Chichester: John Wiley International.
Rayner, A. D. M., Griffith, G. S. & Ainsworth, A. M. (1995). Mycelial interconnectedness. In The Growing Fungus, ed. Gow, N. A. R. & Gadd, G. M.. London: Chapman & Hall, pp. 21–40.
Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–91.
Richter, D. D. & Markewitz, D. (2001). Understanding Soil Change. Cambridge: Cambridge University Press.
Richter, D. D., Markewitz, D., Trumbore, S. A. & Wells, G. P. (1999). Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 400, 56–8.
Roosen, J., Oesterhelt, C., Pardons, K., Swinnen, E. & Winderickx, J. (2004). Integration of nutrient signalling pathways in the yeast Saccharomyces cerevisiae. In Topics in Current Genetics, Vol. 7. Nutrient-induced Responses in Eukaryotic Cells, ed. Winderickx, J. & Taylor, P. M.. Berlin: Springer-Verlag, pp. 277–318.
Rosen, S., Sjollema, K. S., Veenhuis, M. & Tunlid, A. (1997). A cytoplasmic lectin produced by the fungus Arthrobotrys oligospora functions as a storage protein during saprophytic and parasitic growth. Microbiology, 143, 2593–604.
Schimel, D. S. (1995). Terrestial ecosystems and the carbon cycle. Global Change Biology, 1, 77–91.
Sievering, H. (1999). Nitrogen deposition and carbon sequestration. Nature, 400, 629–90.
Simard, S. W., Perry, D. A., Jones, M. al. (1997). Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 388, 579–82.
Sinsabaugh, R. L. & Liptak, M. A. (1997). Enzymatic conversion of plant biomass. In The Mycota, Vol. IV. Environmental and Microbial Relationships, ed. Wicklow, D. T. & Söderström., B.Berlin: Springer-Verlag, pp. 347–57.
Sinsabaugh, R. L., Carreiro, M. M. & Repert, D. A. (2002). Allocation of extracellular enzymatic activity in relation to litter decomposition, N deposition and mass loss. Biogeochemistry, 60, 1–24.
Stark, J. M. & Hart, S. C. (1997). High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature, 385, 61–4.
Stark, N. (1972). Nutrient cycling pathways and litter fungi. Bioscience, 22, 355–60.
Swift, M. J., Heal, O. W. & Anderson, J. M. (1979). Decomposition in Terrestrial Ecosystems. Oxford: Blackwell Scientific.
Tamm, C. O. (1982). Nitrogen cycling in undisturbed and manipulated boreal forest. Philosophical Transactions of the Royal Society, London; series B. 296, 419–25.
Thompson, W. (1984). Distribution, development and functioning of mycelial cord systems of decomposer basidiomycetes of the deciduous woodland floor. In The Ecology and Physiology of the Fungal Mycelium, ed. Jennings, D. H. & Rayner., A. D. M.Cambridge: Cambridge University Press, pp. 185–214.
Thrane, C., Kaufmann, B., Stumm, B. M. & Olsson, S. (2004). Activation of caspase-like activity and poly(ADP-ribose) polymerase degradation during sporulation in Aspergillus nidulans. Fungal Genetics and Biology, 41, 361–8.
Tietema, A., Emmett, B. A., Gundersen, P., Kjonaas, O. J. & Koopmans, C. J. (1998). The fate of 15N-labelled nitrogen deposition in coniferous forests. Forest Ecology and Management, 101, 19–27.
Tlalka, M., Watkinson, S. C., Darrah, P. R. & Watkinson, S. C. (2002). Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes. New Phytologist, 153, 173–84.
Tlalka, M., Darrah, P. R., Hensman, D., Watkinson, S. C. & Fricker, M. D. (2003). Noncircadian oscillations in amino acid transport have complementary profiles in assimilatory and foraging hyphae of Phanerochaete velutina. New Phytologist 158, 325–35.
Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Henricks, D. M. (1997). Mineral control of soil carbon storage and turnover. Nature, 389, 170–3.
Townsend, A. R., Braswell, B. H., Holland, E. A. & Penner, J. E. (1996). Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 6, 806–14.
Venables, C. E. & Watkinson, S. C. (1989). Medium-induced changes in patterns of free and combined amino acids in mycelium of Serpula lacrymans. Mycological Research, 92, 273–7.
Vestgarden, L. S., Nilsen, P. & Abramasen, G. (2004). Nitrogen cycling in Pinus sylvestris stands exposed to different nitrogen inputs. Scandinavian Journal of Forest Research, 19, 38–47.
Vitousek, P. M. & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: how can it occur?Biogeochemistry, 13, 87–119.
Wadekar, R. V., North, M. J. & Watkinson, S. C. (1995). Proteolytic enzymes in two wood decaying basidiomycete fungi, Serpula lacrymans and Coriolus versicolor. Microbiology, 141, 1575–83.
Waldrop, M. P., Zak, D. R. & Sinsabaugh, R. L. (2004). Microbial community responses to nitrogen deposition in Northern forest ecosystems. Soil Biology and Biochemistry, 36, 1443–51.
Wallander, H. & Nylund, J.-E. (1991). Effects of excess nitrogen on carbohydrate concentration and mycorrhizal development of Pinus sylvestris L. seedlings. New Phytologist, 119, 405–11.
Wallenda, T. & Kottke, I. (1998). Nitrogen deposition and mycorrhizas. New Phytologist, 139, 169–87.
Wang, J. & Bakken, L. R. (1997). Competition for nitrogen during decomposition of plant residues in soil: effect of spatial placement of N-rich and N-poor plant residues. Soil Biology and Biochemistry, 29, 153–162.
Wardle, D. A. (2002). Monographs in Population Biology, Vol. 34. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton: Princeton University Press.
Wardle, D. A., Bardgett, R. D., Klironomos, J. al. (2004a). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–33.
Wardle, D. A., Walker, L. R. & Bardgett, R. D. (2004b). Mature forest ecosystems eventually decline as soil properties deteriorate and phosphorus becomes depleted. Science, 305, 509–13.
Watkinson, S. C. (1975). The relation between nitrogen nutrition and formation of mycelial strands in Serpula lacrymans. Transactions of the British Mycological Society, 64, 195–200.
Watkinson, S. C. (1977). The effect of amino acids on coremium development in Penicillium claviforme. Journal of General Microbiology, 101, 269–75.
Watkinson, S. C. (1984). Inhibition of growth and development of Serpula lacrymans by the non-metabolized amino acid analogue 2-aminoisobutyric acid. FEMS Microbiology Letters, 24, 247–50.
Watkinson, S. C. (1999). Metabolism and differentiation in basidiomycete mycelium. In The Fungal Colony, ed. Gow, N. A. R., Robson, G. D. and Gadd, G. M.. Cambridge: Cambridge University Press, pp. 126–56.
Watkinson, S. C., Davison, E. M. & Bramah, J. (1981). The effect of nitrogen availability on growth and cellulolysis by Serpula lacrymans. New Phytologist, 89, 295–305.
Watkinson, S. C., Burton, K. S. & Wood, D. A. (2001). Characteristics of intracellular peptidase and proteinase activities from the mycelium of a cord-forming wood decay fungus, Serpula lacrymans. Mycological Research, 105, 698–704.
Watkinson, S. C., Burton, K, Darrah, P. al. (2005). New approaches to investigating the function of mycelial networks. Mycologist, 19, 11–17.
Wells, J. M. & Boddy, L. (1995). Phosphorus translocation by saprotrophic basidiomycete mycelial cord systems on the floor of a mixed deciduous woodland. Mycological Research, 99, 977–80.
Wells, J. M., Boddy, L. & Donnelly, D. P. (1998). Wood decay and phosphorus translocation by the cord forming basidiomycete Phanerochaete velutina: the significance of local nutrient supply. New Phytologist, 138, 607–17.
Wells, J. M., Harris, M. J. & Boddy, L. (1999). Dynamics of mycelial growth and phosphorus partitioning in developing mycelial cord systems of Phanerochaete velutina: dependence on carbon availability. New Phytologist, 142, 325–34.
Wessels, J. G. H. (1999). Fungi in their own right. Fungal Genetics and Biology, 27, 134–45.
Winderickx, J. G. & Taylor, P. M. (eds.) (2004). Topics in Current Genetics, Vol. 7, Nutrient-induced Responses in Eukaryotic Cells. Berlin: Springer-Verlag.
Zogg, G. P., Zak, D. R., Pregitzer, K. S. & Burton, A. J. (2000). Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology, 81, 1858–66.