Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T04:13:48.620Z Has data issue: false hasContentIssue false

2 - Epigenetic modification of chromatin

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

The coding capacity of the human genome is smaller than originally expected; it is predicted that we have 25 000–40 000 genes, only twofold more than a simple organism such as the roundworm C. elegans (Pennisi, 2003). This modest increase in gene numbers is counterbalanced by enormous gains in the potential for complex interactions through alternative splicing, and in the regulatory intricacy of elements within and between genes in chromatin (Bentley, 2004) (Chapter 1). Added to this complexity is an increasing repertoire of epigenetic mechanisms which form the basis of gene silencing and genomic imprinting, including DNA methylation, histone modification and RNA interference (RNAi). These mechanisms have profound influences on developmental gene expression and, when perturbed, cancer progression and human disease (Bjornsson et al., 2004; Meehan, 2003).

Location, location, location!

The position of a gene within a eukaryotic chromosome can be a major determinant of its transcriptional properties. In the last century it was shown that the relocation of the white gene from a euchromatic position to a heterochromatic region resulted in its variegated expression in the eye of the fruit fly (Drosophila melanogaster) (Dillon and Festenstein, 2002). This observation was an example of epigenetics, which has two closely related meanings: (1) the study of the processes involved in the unfolding development of an organism, including phenomena such as X chromosome inactivation in mammalian females, and the patterning of gene silencing; (2) any mitotically and/or meiotically heritable change in gene function that cannot be explained by changes in DNA sequence (Meehan, 2003; Waddington, 1957).

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 20 - 43
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aapola, U., Liiv, I. and Peterson, P. (2002). Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res., 30, 3602–8.CrossRefGoogle ScholarPubMed
Amir, R. E., Van, d. V., , I., Wan, M.et al. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet., 23, 185–8.CrossRefGoogle ScholarPubMed
Armstrong, S. A., Staunton, J. E., Silverman, L. B.et al. (2002). MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet., 30, 41–7.CrossRefGoogle ScholarPubMed
Aufsatz, W., Mette, M. F., , W. J., Matzke, A. J. and Matzke, M. (2002). RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. USA, 99 Suppl 4, 16499–506.CrossRefGoogle ScholarPubMed
Ayton, P. M. and Cleary, M. L. (2001). Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene, 20, 5695–707.CrossRefGoogle ScholarPubMed
Ballestar, E., Paz, M. F., Valle, L.et al. (2003). Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J., 22, 6335–45.CrossRefGoogle ScholarPubMed
Baylin, S. B. and Herman, J. G. (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet., 16, 168–74.CrossRefGoogle ScholarPubMed
Becker, P. B. and Horz, W. (2002). ATP-dependent nucleosome remodeling. Annu. Rev. Biochem., 71, 247–73.CrossRefGoogle ScholarPubMed
Beechey, C. (2004). http://www.mgu.har.mrc.ac.uk/research/imprinting/largemap.html.
Bentley, D. R. (2004). Genomes for medicine. Nature, 429, 440–5.CrossRefGoogle ScholarPubMed
Berube, N. G., Jagla, M., Smeenk, C.et al. (2002). Neurodevelopmental defects resulting from ATRX overexpression in transgenic mice. Hum. Mol. Genet., 11, 253–61.CrossRefGoogle ScholarPubMed
Berube, N. G., Smeenk, C. A. and Picketts, D. J. (2000). Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association. Hum. Mol. Genet., 9, 539–47.CrossRefGoogle ScholarPubMed
Bestor, T. H. (2000). The DNA methyltransferases of mammals. Hum. Mol. Genet., 9, 2395–402.CrossRefGoogle ScholarPubMed
Biniszkiewicz, D., Gribnau, J., Ramsahoye, B.et al. (2002). Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell Biol., 22, 2124–35.CrossRefGoogle ScholarPubMed
Bittel, D. C., Kibiryeva, N., Talebizadeh, Z. and Butler, M. G. (2003). Microarray analysis of gene/transcript expression in Prader-Willi syndrome: deletion versus UPD. J. Med. Genet., 40, 568–74.CrossRefGoogle ScholarPubMed
Bjornsson, H. T., Fallin, M. D. and Feinberg, A. P. (2004). An integrated epigenetic and genetic approach to common human disease. Trends Genet., 20, 350–8.CrossRefGoogle ScholarPubMed
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. and Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294, 2536–9.CrossRefGoogle ScholarPubMed
Brannan, C. I. and Bartolomei, M. S. (1999). Mechanisms of genomic imprinting. Curr. Opin. Genet. Dev., 9, 164–70.CrossRefGoogle ScholarPubMed
Brown, R. and Strathdee, G. (2002). Epigenomics and epigenetic therapy of cancer. Trends Mol. Med., 8, S43–S48.CrossRefGoogle Scholar
Brownell, J. E., Zhou, J., Ranalli, T.et al. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell, 84, 843–51.CrossRefGoogle ScholarPubMed
Cardoso, C., Timsit, S., Villard, L.et al. (1998). Specific interaction between the XNP/ATR-X gene product and the SET domain of the human EZH2 protein. Hum. Mol. Genet., 7, 679–84.CrossRefGoogle ScholarPubMed
Chambeyron, S. and Bickmore, W. A. (2004). Does looping and clustering in the nucleus regulate gene expression?Curr. Opin. Cell Biol., 16, 256–62.CrossRefGoogle ScholarPubMed
Chen, R. Z., Akbarian, S., Tudor, M. and Jaenisch, R. (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet., 27, 327–31.CrossRefGoogle Scholar
Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L. and Jaenisch, R. (1998). DNA hypomethylation leads to elevated mutation rates. Nature, 395, 89–93.CrossRefGoogle ScholarPubMed
Chen, W. G., Chang, Q., Lin, Y.et al. (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302, 885–9.CrossRefGoogle ScholarPubMed
Chung, D. (2002). Histone modification: the ‘next wave’ in cancer therapeutics. Trends Mol. Med., 8, S10–S11.CrossRefGoogle ScholarPubMed
Claus, R. and Lubbert, M. (2003). Epigenetic targets in hematopoietic malignancies. Oncogene, 22, 6489–96.CrossRefGoogle ScholarPubMed
Colantuoni, C., Jeon, O. H., Hyder, K.et al. (2001). Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification. Neurobiol. Dis., 8, 847–65.CrossRefGoogle ScholarPubMed
Constancia, M., Hemberger, M., Hughes, J.et al. (2002). Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature, 417, 945–8.CrossRefGoogle ScholarPubMed
Cote, J., Quinn, J., Workman, J. L. and Peterson, C. L. (1994). Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science, 265, 53–60.CrossRefGoogle ScholarPubMed
Cowell, I. G., Aucott, R., Mahadevaiah, S. K.et al. (2002). Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma, 111, 22–36.CrossRefGoogle ScholarPubMed
Cui, H., Cruz-Correa, M., Giardiello, F. M.et al. (2003). Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science, 299, 1753–5.CrossRefGoogle ScholarPubMed
Cui, H., Onyango, P., Brandenburg, S.et al. (2002). Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res., 62, 6442–6.Google ScholarPubMed
Davey, C., Pennings, S., Meersseman, G., Wess, T. J. and Allan, J. (1995). Periodicity of strong nucleosome positioning sites around the chicken adult beta-globin gene may encode regularly spaced chromatin. Proc. Natl. Acad. Sci. USA, 92, 11210–14.CrossRefGoogle ScholarPubMed
Dennis, K., Fan, T., Geiman, T., Yan, Q. and Muegge, K. (2001). Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev., 15, 2940–4.CrossRefGoogle ScholarPubMed
Dillon, N. and Festenstein, R. (2002). Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet., 18, 252–8.CrossRefGoogle ScholarPubMed
Drake, A. J., Walker, B. R. and Seckl, J. R. (2005). Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am. J. Physiol Regul. Integr. Comp Physiol., 288, R34–R38.CrossRefGoogle ScholarPubMed
Easwaran, H. P., Schermelleh, L., Leonhardt, H. and Cardoso, M. C. (2004). Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep., 5, 1181–6.CrossRefGoogle ScholarPubMed
Eden, A., Gaudet, F., Waghmare, A. and Jaenisch, R. (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science, 300, 455.CrossRefGoogle ScholarPubMed
Edmondson, D. G., Zhang, W., Watson, A.et al. (1998). In vivo functions of histone acetylation/deacetylation in Tup1p repression and Gcn5p activation. Cold Spring Harb. Symp. Quant. Biol., 63, 459–68.CrossRefGoogle ScholarPubMed
Fahrner, J. A. and Baylin, S. B. (2003). Heterochromatin: stable and unstable invasions at home and abroad. Genes Dev., 17, 1805–12.CrossRefGoogle ScholarPubMed
Fahrner, J. A., Eguchi, S., Herman, J. G. and Baylin, S. B. (2002). Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res., 62, 7213–18.Google Scholar
Fan, T., Yan, Q., Huang, J.et al. (2003). Lsh-deficient murine embryonal fibroblasts show reduced proliferation with signs of abnormal mitosis. Cancer Res., 63, 4677–83.Google ScholarPubMed
Feinberg, A. P., Oshimura, M. and Barrett, J. C. (2002). Epigenetic mechanisms in human disease. Cancer Res., 62, 6784–7.Google ScholarPubMed
Feinberg, A. P. and Tycko, B. (2004). The history of cancer epigenetics. Nat. Rev. Cancer, 4, 143–53.CrossRefGoogle ScholarPubMed
Ferguson-Smith, A., Lin, S. P., Tsai, C. E., Youngson, N. and Tevendale, M. (2003). Genomic imprinting—insights from studies in mice. Semin. Cell Dev. Biol., 14, 43–9.CrossRefGoogle ScholarPubMed
Ferguson-Smith, A. C., Lin, S. P. and Youngson, N. (2004). Regulation of gene activity and repression: a consideration of unifying themes. Curr. Top. Dev. Biol., 60, 197–213.CrossRefGoogle ScholarPubMed
Ferrando, A. A., Armstrong, S. A., Neuberg, D. S.et al. (2003). Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood, 102, 262–8.CrossRefGoogle ScholarPubMed
Fire, A., Xu, S., Montgomery, M. K.et al. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–11.CrossRefGoogle ScholarPubMed
Fleming, A. B. and Pennings, S. (2001). Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J., 20, 5219–31.CrossRefGoogle ScholarPubMed
Gaudet, F., Hodgson, J. G., Eden, A.et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300, 489–92.CrossRefGoogle ScholarPubMed
Georgel, P. T., Horowitz-Scherer, R. A., Adkins, N.et al. (2003). Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J. Biol. Chem., 278, 32181–8.CrossRefGoogle ScholarPubMed
Gibbons, R. J. and Higgs, D. R. (1996). The alpha-thalassemia/mental retardation syndromes. Medicine (Baltimore), 75, 45–52.CrossRefGoogle ScholarPubMed
Gibbons, R. J., McDowell, T. L., Raman, S.et al. (2000). Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat. Genet., 24, 368–71.CrossRefGoogle ScholarPubMed
Gibbons, R. J., Picketts, D. J., Villard, L. and Higgs, D. R. (1995). Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell, 80, 837–45.CrossRefGoogle Scholar
Gilbert, N., Boyle, S., Fiegler, H.et al. (2004). Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell, 118, 555–66.CrossRefGoogle ScholarPubMed
Gilbert, N., Boyle, S., Sutherland, H.et al. (2003). Formation of facultative heterochromatin in the absence of HP1. EMBO J., 22, 5540–50.CrossRefGoogle ScholarPubMed
Goel, A., Arnold, C. N., Niedzwiecki, D.et al. (2004). Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res., 64, 3014–21.CrossRefGoogle ScholarPubMed
Groudine, M. and Weintraub, H. (1981). Activation of globin genes during chicken development. Cell, 24, 393–401.CrossRefGoogle ScholarPubMed
Guo, G., Wang, W. and Bradley, A. (2004). Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature, 429, 891–5.CrossRefGoogle ScholarPubMed
Guy, J., Hendrich, B., Holmes, M., Martin, J. E. and Bird, A. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet., 27, 322–6.CrossRefGoogle ScholarPubMed
Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. and Cedar, H. (2003). The role of DNA methylation in setting up chromatin structure during development. Nat. Genet., 34, 187–92.CrossRefGoogle ScholarPubMed
Hata, K., Okano, M., Lei, H. and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129, 1983–93.Google ScholarPubMed
Hattori, N., Abe, T., Hattori, N.et al. (2004). Preference of DNA methyltransferases for CpG islands in mouse embryonic stem cells. Genome Res., 14, 1733–40.CrossRefGoogle ScholarPubMed
Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. and Bird, A. (2001). Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev., 15, 710–23.CrossRefGoogle ScholarPubMed
Hendrich, B. and Tweedie, S. (2003). The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet., 19, 269–77.CrossRefGoogle ScholarPubMed
Horike, S., Cai, S., Miyano, M., Cheng, J. F. and Kohwi-Shigematsu, T. (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet., 37, 31–40.CrossRefGoogle ScholarPubMed
Horike, S., Mitsuya, K., Meguro, M.et al. (2000). Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith–Wiedemann syndrome. Hum. Mol. Genet., 9, 2075–83.CrossRefGoogle ScholarPubMed
Huang, C., Sloan, E. A. and Boerkoel, C. F. (2003). Chromatin remodeling and human disease. Curr. Opin. Genet. Dev., 13, 246–52.CrossRefGoogle ScholarPubMed
Jaenisch, R. and Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet., 33 Suppl, 245–54.CrossRefGoogle ScholarPubMed
Jenuwein, T. and Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–80.CrossRefGoogle ScholarPubMed
Johnston, M. V., Alemi, L. and Harum, K. H. (2003). Learning, memory, and transcription factors. Pediatr. Res., 53, 369–74.CrossRefGoogle ScholarPubMed
Jones, P. A. and Laird, P. W. (1999). Cancer epigenetics comes of age. Nat. Genet., 21, 163–7.CrossRefGoogle ScholarPubMed
Kaneda, M., Okano, M., Hata, K.et al. (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 429, 900–3.CrossRefGoogle Scholar
Kawasaki, H. and Taira, K. (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature, 431, 211–17.CrossRefGoogle ScholarPubMed
Khorasanizadeh, S. (2004). The nucleosome: from genomic organization to genomic regulation. Cell, 116, 259–72.CrossRefGoogle ScholarPubMed
Klochendler-Yeivin, A., Muchardt, C. and Yaniv, M. (2002). SWI/SNF chromatin remodeling and cancer. Curr. Opin. Genet. Dev., 12, 73–9.CrossRefGoogle ScholarPubMed
Klose, R. J., Sarraf, S. A., Schmiedeberg, L.et al. (2005). DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol. Cell, 19, 667–78.CrossRefGoogle ScholarPubMed
Kondo, Y. and Issa, J. P. (2004). Epigenetic changes in colorectal cancer. Cancer Metastasis Rev., 23, 29–39.CrossRefGoogle ScholarPubMed
Kornberg, R. D. and Lorch, Y. (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 98, 285–94.CrossRefGoogle ScholarPubMed
Kuo, M. H., Brownell, J. E., Sobel, R. E.et al. (1996). Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature, 383, 269–72.CrossRefGoogle ScholarPubMed
Lachner, M., O'Sullivan, R. J. and Jenuwein, T. (2003). An epigenetic road map for histone lysine methylation. J. Cell Sci., 116, 2117–24.CrossRefGoogle ScholarPubMed
Lee, J., Inoue, K., Ono, R.et al. (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 129, 1807–17.Google ScholarPubMed
Lehnertz, B., Ueda, Y., Derijck, A. A.et al. (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol., 13, 1192–200.CrossRefGoogle ScholarPubMed
Lewis, A., Mitsuya, K., Umlauf, D.et al. (2004). Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet., 36, 1291–5.CrossRefGoogle ScholarPubMed
Lewis, J. D., Meehan, R. R., Henzel, W. J.et al. (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69, 905–14.CrossRefGoogle ScholarPubMed
Liang, G., Chan, M. F., Tomigahara, Y.et al. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell Biol., 22, 480–91.CrossRefGoogle ScholarPubMed
Lock, L. F., Melton, D. W., Caskey, C. T. and Martin, G. R. (1986). Methylation of the mouse hprt gene differs on the active and inactive X chromosomes. Mol. Cell Biol., 6, 914–24.CrossRefGoogle ScholarPubMed
Lock, L. F., Takagi, N. and Martin, G. R. (1987). Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell, 48, 39–46.CrossRefGoogle ScholarPubMed
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251–60.CrossRefGoogle ScholarPubMed
Luger, K. and Richmond, T. J. (1998). The histone tails of the nucleosome. Curr. Opin. Genet. Dev., 8, 140–6.CrossRefGoogle ScholarPubMed
Lynch, S. A., Whatley, S. D., Ramesh, V., Sinha, S. and Ravine, D. (2003). Sporadic case of fatal encephalopathy with neonatal onset associated with a T158M missense mutation in MECP2. Arch. Dis. Child Fetal Neonatal Ed, 88, F250–F252.CrossRefGoogle ScholarPubMed
Maher, E. R., Afnan, M. and Barratt, C. L. (2003). Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs?Hum. Reprod., 18, 2508–11.CrossRefGoogle ScholarPubMed
Maher, E. R., Brueton, L. A., Bowdin, S. C.et al. (2003 b). Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J. Med. Genet., 40, 62–4.CrossRefGoogle Scholar
Maison, C. and Almouzni, G. (2004). HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol., 5, 296–304.CrossRefGoogle ScholarPubMed
Mann, M. R. and Bartolomei, M. S. (1999). Towards a molecular understanding of Prader-Willi and Angelman syndromes. Hum. Mol. Genet., 8, 1867–73.CrossRefGoogle ScholarPubMed
Marcus, G. A., Silverman, N., Berger, S. L., Horiuchi, J. and Guarente, L. (1994). Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J., 13, 4807–15.Google ScholarPubMed
Margot, J. B., Cardoso, M. C. and Leonhardt, H. (2001). Mammalian DNA methyltransferases show different subnuclear distributions. J. Cell Biochem., 83, 373–9.CrossRefGoogle ScholarPubMed
Marmorstein, R. (2003). Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci., 28, 59–62.CrossRefGoogle ScholarPubMed
Martinowich, K., Hattori, D., Wu, H.et al. (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 302, 890–3.CrossRefGoogle ScholarPubMed
McDowell, T. L., Gibbons, R. J., Sutherland, H.et al. (1999). Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl. Acad. Sci. USA, 96, 13983–8.CrossRefGoogle ScholarPubMed
Meehan, R. R. (2003). DNA methylation in animal development. Semin. Cell Dev. Biol., 14, 53–65.CrossRefGoogle ScholarPubMed
Meehan, R. R., Kao, C. F. and Pennings, S. (2003). HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J., 22, 3164–74.CrossRefGoogle Scholar
Meehan, R. R., Lewis, J. D. and Bird, A. P. (1992). Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res., 20, 5085–92.CrossRefGoogle ScholarPubMed
Meehan, R. R., Pennings, S. and Stancheva, I. (2001). Lashings of DNA methylation, forkfuls of chromatin remodeling. Genes Dev., 15, 3231–6.CrossRefGoogle ScholarPubMed
Meersseman, G., Pennings, S. and Bradbury, E. M. (1992). Mobile nucleosomes—a general behavior. EMBO J., 11, 2951–9.Google ScholarPubMed
Mermoud, J. E., Popova, B., Peters, A. H., Jenuwein, T. and Brockdorff, N. (2002). Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr. Biol., 12, 247–51.CrossRefGoogle ScholarPubMed
Miura, K., Kishino, T., Li, E.et al. (2002). Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol. Dis., 9, 149–59.CrossRefGoogle ScholarPubMed
Myohanen, S. K., Baylin, S. B. and Herman, J. G. (1998). Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res., 58, 591–3.Google ScholarPubMed
Nan, X., Campoy, F. J. and Bird, A. (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88, 471–81.CrossRefGoogle ScholarPubMed
Nan, X., Ng, H. H., Johnson, C. A.et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386–9.CrossRefGoogle ScholarPubMed
Neul, J. L. and Zoghbi, H. Y. (2004). Rett syndrome: a prototypical neurodevelopmental disorder. Neuroscientist, 10, 118–28.CrossRefGoogle ScholarPubMed
Nicholls, R. D. and Knepper, J. L. (2001). Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu. Rev. Genomics Hum. Genet., 2, 153–75.CrossRefGoogle ScholarPubMed
Nielsen, S. J., Schneider, R., Bauer, U. M.et al. (2001). Rb targets histone H3 methylation and HP1 to promoters. Nature, 412, 561–5.CrossRefGoogle ScholarPubMed
Ohtani-Fujita, N., Dryja, T. P., Rapaport, J. M.et al. (1997). Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet. Cytogenet., 98, 43–9.CrossRefGoogle ScholarPubMed
Okano, M., Bell, D. W., Haber, D. A. and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99, 247–57.CrossRefGoogle Scholar
Pennings, S., Allan, J. and Davey, C. (2005). DNA methylation, nucleosome formation and positioning. Brief. Funct. Genomic. Proteomic, 3, 351–61.CrossRefGoogle ScholarPubMed
Pennisi, E. (2003). Human genome. A low number wins the GeneSweep Pool. Science, 300, 1484.CrossRefGoogle ScholarPubMed
Plass, C. (2002). Cancer epigenomics. Hum. Mol. Genet., 11, 2479–88.CrossRefGoogle ScholarPubMed
Plath, K., Mlynarczyk-Evans, S., Nusinow, D. A. and Panning, B. (2002). Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet., 36, 233–78.CrossRefGoogle ScholarPubMed
Pradhan, S. and Kim, G. D. (2002). The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. EMBO J., 21, 779–88.CrossRefGoogle ScholarPubMed
Quivy, J. P., Roche, D., Kirschner, D.et al. (2004). A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J, 23, 3516–26.CrossRefGoogle ScholarPubMed
Rea, S., Eisenhaber, F., O'Carroll, D.et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406, 593–9.CrossRefGoogle ScholarPubMed
Redmond, L. and Ghosh, A. (2001). The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr. Opin. Neurobiol., 11, 111–17.CrossRefGoogle ScholarPubMed
Reik, W., Constancia, M., Fowden, A.et al. (2003). Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J. Physiol., 547, 35–44.CrossRefGoogle ScholarPubMed
Renieri, A., Meloni, I., Longo, I.et al. (2003). Rett syndrome: the complex nature of a monogenic disease. J. Mol. Med., 81, 346–54.CrossRefGoogle ScholarPubMed
Ricciardiello, L., Goel, A., Mantovani, V.et al. (2003). Frequent loss of hMLH1 by promoter hypermethylation leads to microsatellite instability in adenomatous polyps of patients with a single first-degree member affected by colon cancer. Cancer Res., 63, 787–92.Google ScholarPubMed
Richards, E. J. and Elgin, S. C. (2002). Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell, 108, 489–500.CrossRefGoogle ScholarPubMed
Robertson, K. D., Ait-Si-Ali, S., Yokochi, T. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet., 25, 338–342.CrossRefGoogle ScholarPubMed
Rodriguez-Melendez, R. and Zempleni, J. (2003). Regulation of gene expression by biotin (review). J. Nutr. Biochem., 14, 680–90.CrossRefGoogle Scholar
Ruzov, A., Dunican, D. S., Prokhortchouk, A.et al. (2004). Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development, 131, 6185–94.CrossRefGoogle ScholarPubMed
Samaco, R. C., Hogart, A. and Lasalle, J. M. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum. Mol. Genet, 14, 483–92.CrossRefGoogle ScholarPubMed
Sansom, O. J., Berger, J., Bishop, S. M.et al. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat. Genet., 34, 145–7.CrossRefGoogle ScholarPubMed
Schieve, L. A., Rasmussen, S. A., Buck, G. M.et al. (2004). Are children born after assisted reproductive technology at increased risk for adverse health outcomes?Obstet. Gynecol., 103, 1154–63.CrossRefGoogle ScholarPubMed
Seitz, H., Royo, H., Bortolin, M. L.et al. (2004). A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res, 14, 1741–8.CrossRefGoogle ScholarPubMed
Shahbazian, M., Young, J., Yuva-Paylor, L.et al. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243–54.CrossRefGoogle ScholarPubMed
Shahbazian, M. D. and Zoghbi, H. Y. (2002). Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am. J. Hum. Genet., 71, 1259–72.CrossRefGoogle ScholarPubMed
Shiota, K., Kogo, Y., Ohgane, J.et al. (2002). Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells, 7, 961–9.CrossRefGoogle ScholarPubMed
Sleutels, F., Zwart, R. and Barlow, D. P. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 415, 810–13.CrossRefGoogle ScholarPubMed
Sobulo, O. M., Borrow, J., Tomek, R.et al. (1997). MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16) (q23;p13.3). Proc. Natl. Acad. Sci. USA, 94, 8732–7.CrossRefGoogle Scholar
Stancheva, I., Collins, A. L., Van, d. V., , I, Zoghbi, H. and Meehan, R. R. (2003). A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. Mol. Cell, 12, 425–35.CrossRefGoogle ScholarPubMed
Stancheva, I., El Maarri, O., Walter, J., Niveleau, A. and Meehan, R. R. (2002). DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev. Biol., 243, 155–65.CrossRefGoogle ScholarPubMed
Stancheva, I. and Meehan, R. R. (2000). Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes Dev., 14, 313–27.Google ScholarPubMed
Sun, L. Q., Lee, D. W., Zhang, Q.et al. (2004). Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes Dev., 18, 1035–46.CrossRefGoogle ScholarPubMed
Svoboda, P., Stein, P., Anger, M.et al. (2004). RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol., 269, 276–85.CrossRefGoogle ScholarPubMed
Toyota, M., Ho, C., Ahuja, N.et al. (1999). Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res., 59, 2307–12.Google ScholarPubMed
Traynor, J., Agarwal, P., Lazzeroni, L. and Francke, U. (2002). Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations. BMC. Med. Genet., 3, 12.CrossRefGoogle ScholarPubMed
Tudor, M., Akbarian, S., Chen, R. Z. and Jaenisch, R. (2002). Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc. Natl. Acad. Sci. USA, 99, 15536–41.CrossRefGoogle Scholar
Turner, B. M. (2000). Histone acetylation and an epigenetic code. Bioessays, 22, 836–45.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Umlauf, D., Goto, Y., Cao, R.et al. (2004). Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet., 36, 1296–1300.CrossRefGoogle ScholarPubMed
Leeuwen, F., Gafken, P. R. and Gottschling, D. E. (2002). Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell, 109, 745–56.CrossRefGoogle ScholarPubMed
Vetter, M. L. (2003). Methylation gets SMRT. Functional insights into Rett syndrome. Dev. Cell, 5, 359–60.CrossRefGoogle ScholarPubMed
Volpe, T., Schramke, V., Hamilton, G. L.et al. (2003). RNA interference is required for normal centromere function in fission yeast. Chromosome. Res., 11, 137–46.CrossRefGoogle ScholarPubMed
Waddington, C. (1957). The strategy of the genes. London: Allen & Unwin.Google Scholar
Walsh, C. P., Chaillet, J. R. and Bestor, T. H. (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet., 20, 116–17.CrossRefGoogle ScholarPubMed
Walter, J. and Paulsen, M. (2003). Imprinting and disease. Semin. Cell Dev. Biol., 14, 101–10.CrossRefGoogle ScholarPubMed
Watson, A. D., Edmondson, D. G., Bone, J. R.et al. (2000). Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev., 14, 2737–44.CrossRefGoogle ScholarPubMed
Weintraub, H. (1985). Assembly and propagation of repressed and depressed chromosomal states. Cell, 42, 705–11.CrossRefGoogle ScholarPubMed
Weksberg, R., Smith, A. C., Squire, J. and Sadowski, P. (2003). Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum. Mol. Genet., 12 Spec No 1, R61–R68.CrossRefGoogle ScholarPubMed
White, S. A. and Allshire, R. C. (2004). Loss of Dicer fowls up centromeres. Nat. Cell Biol., 6, 696–7.CrossRefGoogle ScholarPubMed
Wolffe, A. P. (1998). Chromatin: structure and function. Academic Press, London.Google Scholar
Wyrick, J. J., Holstege, F. C., Jennings, E. G.et al. (1999). Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature, 402, 418–21.CrossRefGoogle Scholar
Yan, Q., Cho, E., Lockett, S. and Muegge, K. (2003 a). Association of Lsh, a regulator of DNA methylation, with pericentromeric heterochromatin is dependent on intact heterochromatin. Mol. Cell Biol., 23, 8416–28.CrossRefGoogle ScholarPubMed
Yan, Q., Huang, J., Fan, T., Zhu, H. and Muegge, K. (2003 b). Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. EMBO J., 22, 5154–62.CrossRefGoogle ScholarPubMed
Yang, T., Adamson, T. E., Resnick, J. L.et al. (1998). A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat. Genet., 19, 25–31.CrossRefGoogle ScholarPubMed
Yokoyama, A., Wang, Z., Wysocka, J.et al. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell Biol., 24, 5639–49.CrossRefGoogle ScholarPubMed
Yoon, H. G., Chan, D. W., Reynolds, A. B., Qin, J. and Wong, J. (2003). N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell, 12, 723–34.CrossRefGoogle ScholarPubMed
Young, J. I., Hong, E. P., Castle, J. C.et al. (2005). Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl. Acad. Sci. USA, 102, 17551–8.CrossRefGoogle ScholarPubMed
Young, L. E. and Beaujean, N. (2004). DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim Reprod. Sci., 82–83, 61–78.CrossRefGoogle ScholarPubMed
Zhang, X., Yang, Z., Khan, S. I.et al. (2003). Structural basis for the product specificity of histone lysine methyltransferases. Mol. Cell, 12, 177–85.CrossRefGoogle ScholarPubMed
Zhang, Y., Ng, H. H., Erdjument-Bromage, H.et al. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev., 13, 1924–35.CrossRefGoogle Scholar
Zhao, X., Ueba, T., Christie, B. R.et al. (2003). Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl. Acad. Sci. USA, 100, 6777–82.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×