Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-09T16:00:37.729Z Has data issue: false hasContentIssue false

14 - Application of CRISPR for Pooled, Vector-based Functional Genomic Screening in Mammalian Cell Lines

from Part III - Technology Development and Screening

Published online by Cambridge University Press:  30 July 2018

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 209 - 222
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, AJ, Meyers, RM, Weir, BA, et al. 2016. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6: 914929.CrossRefGoogle ScholarPubMed
Bassik, MC, Lebbink, RJ, Churchman, LS, et al. 2009. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods 6: 443445.CrossRefGoogle ScholarPubMed
Boettcher, M, Hoheisel, JD. 2010. Pooled RNAi screens: technical and biological aspects. Curr Genomics 11: 162167.CrossRefGoogle ScholarPubMed
Boettcher, M, Mcmanus, MT. 2015. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58: 575585.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Doench, JG, Fusi, N, Sullender, M, et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34: 184191.CrossRefGoogle ScholarPubMed
Dorsett, Y, Tuschl, T. 2004. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3: 318329.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.CrossRefGoogle ScholarPubMed
Evers, B, Jastrzebski, K, Heijmans, JP, et al. 2016. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34: 631633.CrossRefGoogle ScholarPubMed
Fire, A, Xu, S, Montgomery, MK, et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806811.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159: 647661.CrossRefGoogle ScholarPubMed
Hart, T, Brown, KR, Sircoulomb, F, Ottapel, R, Moffat, J. 2014. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 10: 733.CrossRefGoogle ScholarPubMed
Hart, T, Chandrashekhar, M, Aregger, M, et al. 2015. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163: 15151526.CrossRefGoogle ScholarPubMed
Hinz, JM, Laughery, MF, Wyrick, JJ. 2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54: 70637066.CrossRefGoogle ScholarPubMed
Horlbeck, MA, Witkowsky, LB, Guglielmi, B, et al. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife 5: e12677.CrossRefGoogle ScholarPubMed
Isaac, RS, Jiang, F, Doudna, JA, et al. 2016. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife 5: e13450.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I., et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816821.CrossRefGoogle ScholarPubMed
Jinek, M, East, A, Cheng, A, et al. 2013. RNA-programmed genome editing in human cells. Elife 2: e00471.CrossRefGoogle ScholarPubMed
Koike-Yusa, H, Li, Y, Tan, EP, Velasco-Herrera Mdel, C, Yusa, K. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32: 267273.CrossRefGoogle ScholarPubMed
Kolde, R, Laur, S, Adler, P, Vilo, J. 2012. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28: 573580.CrossRefGoogle ScholarPubMed
Li, W, Xu, H, Xiao, T, et al. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15: 554.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823826.CrossRefGoogle ScholarPubMed
Marceau, CD, Puschnik, AS, Majzoub, K, et al. 2016. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535: 159163.CrossRefGoogle ScholarPubMed
Mohr, S, Bakal, C, Perrimon, N. 2010. Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79: 3764.CrossRefGoogle ScholarPubMed
Mohr, SE, Hu, Y, Ewen-Campen, B, et al. 2016. CRISPR guide RNA design for research applications. FEBS J 283(17): 32323238.CrossRefGoogle ScholarPubMed
Morgens, DW, Deans, RM, Li, A, Bassik, MC. 2016. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat Biotechnol 34: 634636.CrossRefGoogle ScholarPubMed
Munoz, DM, Cassiani, PJ, Li, L, et al. 2016. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6(8): 900913.CrossRefGoogle ScholarPubMed
Newton, K, Manning, G. 2016. Necroptosis and inflammation. Annu Rev Biochem 85: 743763.CrossRefGoogle ScholarPubMed
Ran, FA, Cong, L, Yan, WX, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186191.CrossRefGoogle ScholarPubMed
Sander, JD, Joung, JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32: 347355.CrossRefGoogle ScholarPubMed
Sanjana, NE. 2016. Genome-scale CRISPR pooled screens. Anal Biochem 532: 9599.CrossRefGoogle ScholarPubMed
Sanjana, NE, Shalem, O, Zhang, F. 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11: 783784.CrossRefGoogle ScholarPubMed
Savidis, G, McDougall, WM, Meraner, P, et al. 2016. Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep 16: 232246.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 8487.CrossRefGoogle ScholarPubMed
Shi, J, Wang, E, Milazzo, JP, et al. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33: 661667.CrossRefGoogle ScholarPubMed
Sigoillot, FD, King, RW. 2011. Vigilance and validation: keys to success in RNAi screening. ACS Chem Biol 6: 4760.CrossRefGoogle ScholarPubMed
Smith, JD, Suresh, S, Schlecht, U, et al. 2016. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 17: 45.CrossRefGoogle ScholarPubMed
Sternberg, SH, Lafrance, B, Kaplan, M, Doudna, JA. 2015. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527: 110113.CrossRefGoogle ScholarPubMed
Strezoska, Z., Licon, A., Haimes, J., et al. 2012. Optimized PCR conditions and increased shRNA fold representation improve reproducibility of pooled shRNA screens. PLoS One 7: e42341.CrossRefGoogle ScholarPubMed
Tycko, J, Myer, VE, Hsu, PD. 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell 63: 355370.CrossRefGoogle ScholarPubMed
Van Overbeek, M, Capurso, D, Carter, MM, et al. 2016. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell 63(4): 633646.CrossRefGoogle ScholarPubMed
Wang, H, Lu, B, Castillo, J, et al. 2016a. Tankyrase inhibitor sensitizes lung cancer cells to endothelial growth factor receptor (EGFR) inhibition via stabilizing angiomotins and inhibiting YAP signaling. J Biol Chem 291: 1525615266.CrossRefGoogle ScholarPubMed
Wang, T, Birsoy, K, Hughes, NW, et al. 2015. Identification and characterization of essential genes in the human genome. Science 350: 10961101.CrossRefGoogle ScholarPubMed
Wang, T, Lander, ES, Sabatini, DM. 2016b. Large-scale single guide RNA library construction and use for CRISPR-Cas9-based genetic screens. Cold Spring Harb Protoc 2016: pdb top086892.CrossRefGoogle ScholarPubMed
Wang, T, Wei, JJ, Sabatini, DM, Lander, ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343: 8084.CrossRefGoogle ScholarPubMed
Wilcoxon, F. 1946. Individual comparisons of grouped data by ranking methods. J Econ Entomol 39: 269.CrossRefGoogle ScholarPubMed
Yu, J, Silva, J, Califano, A. 2016. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling. Bioinformatics 32: 260267.CrossRefGoogle ScholarPubMed
Zhang, R, Miner, JJ, Gorman, MJ, et al. 2016. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535: 164168.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×