Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T19:22:53.378Z Has data issue: false hasContentIssue false

7 - Genome Editing with Desired Mutations (Knockin) with CRISPR in Model Organisms

from Part II - Genome Editing in Model Organisms

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 97 - 109
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auer, TO, Duroure, K, De Cian, A, Concordet, J-P, Del Bene, F. 2014. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1): 142153.CrossRefGoogle ScholarPubMed
Chari, R, Mali, P, Moosburner, M, Church, GM. 2015. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12(9): 823826.CrossRefGoogle Scholar
Chen, F, Pruett-Miller, SM, Huang, Y, et al. 2011a. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9): 753755.CrossRefGoogle ScholarPubMed
Chen, F, Pruett-Miller, SM, Huang, Y, et al. 2011b. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9): 753755.CrossRefGoogle ScholarPubMed
Chen, Y, Cao, J, Xiong, M, et al. 2015. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17(2): 233244.CrossRefGoogle ScholarPubMed
Chu, VT, Weber, T, Wefers, B, et al. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5): 543548.CrossRefGoogle ScholarPubMed
Dickinson, DJ, Pani, AM, Heppert, JK, Higgins, CD, Goldstein, B. 2015. Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200(4): 10351049.CrossRefGoogle ScholarPubMed
Doench, JG, Hartenian, E, Graham, DB, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 32(12): 12621267.CrossRefGoogle ScholarPubMed
Dow, LE, Fisher, J, O’Rourke, KP, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33(4): 390394.CrossRefGoogle ScholarPubMed
Duda, K, Lonowski, LA, Kofoed-Nielsen, M, et al. 2014. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucl Acids Res 42(10): e84.CrossRefGoogle ScholarPubMed
Farboud, B, Meyer, BJ. 2015. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics 199(4): 959971.CrossRefGoogle ScholarPubMed
Flemr, M, Bühler, M. 2015. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep 12(4): 709716.CrossRefGoogle ScholarPubMed
González, F, Zhu, Z, Shi, Z-D, et al. 2014. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15(2): 215226.CrossRefGoogle ScholarPubMed
Haeussler, M, Schönig, K, Eckert, H, et al. 2016. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1): 148.CrossRefGoogle ScholarPubMed
Hatada, S, Subramanian, A, Mandefro, B, et al. 2015. Low-dose irradiation enhances gene targeting in human pluripotent stem cells. Stem Cells Trans Med 4(9): 9981010.CrossRefGoogle ScholarPubMed
He, X, Tan, C, Wang, F, et al. 2016. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 44(9): e85.CrossRefGoogle ScholarPubMed
Hisano, Y, Sakuma, T, Nakade, S, et al. 2015. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Scientific Rep 5: 8841.CrossRefGoogle ScholarPubMed
Hwang, WY, Fu, Y, Reyon, D, et al. 2013. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8(7): e68708.CrossRefGoogle ScholarPubMed
Kleinstiver, BP, Tsai, SQ, Prew, MS, et al. (2016). Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8): 869874.CrossRefGoogle ScholarPubMed
Li, J, Zhang, B-B, Ren, Y-G, et al. 2015. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res 25(5): 634637.CrossRefGoogle ScholarPubMed
Liu, X, Homma, A, Sayadi, J, et al. 2016. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Scientific Rep 6: 19675.CrossRefGoogle ScholarPubMed
Maruyama, T, Dougan, SK, Truttmann, MC, et al. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5): 538542.CrossRefGoogle ScholarPubMed
Merkle, FT, Neuhausser, WM, Santos, D, et al. 2015. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep 11(6): 875883.CrossRefGoogle ScholarPubMed
Paquet, D, Kwart, D, Chen, A, et al. 2016. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601): 125129.CrossRefGoogle ScholarPubMed
Park, A, Won, ST, Pentecost, M, Bartkowski, W, Lee, B. 2014. CRISPR/Cas9 allows efficient and complete knock-in of a destabilization domain-tagged essential protein in a human cell line, allowing rapid knockdown of protein function. PLoS One 9(4): e95101.CrossRefGoogle Scholar
Petrezselyova, S, Kinsky, S, Truban, D, et al. 2015. Homology arms of targeting vectors for gene insertions and CRISPR/Cas9 technology: size does not matter; quality control of targeted clones does. Cell Mol Biol Lett 20(5): 773787.CrossRefGoogle ScholarPubMed
Pinder, J, Salsman, J, Dellaire, G. 2015. Nuclear domain “knock-in” screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res 43(19): 93799392.CrossRefGoogle ScholarPubMed
Platt, RJ, Chen, S, Zhou, Y, et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2): 440455.CrossRefGoogle ScholarPubMed
Renaud, J-B, Boix, C, Charpentier, M, et al. 2016. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14(9): 22632272.CrossRefGoogle ScholarPubMed
Richardson, CD, Ray, GJ, DeWitt, MA, Curie, GL, Corn, JE. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34(3): 339344.CrossRefGoogle ScholarPubMed
Song, J, Yang, D, Xu, J, et al. 2016. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Comm 7: 10548.CrossRefGoogle ScholarPubMed
Yang, L, Guell, M, Byrne, S, et al. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41(19): 90499061.CrossRefGoogle ScholarPubMed
Yoshimi, K, Kaneko, T, Voigt, B, Mashimo, T. 2014. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform. Nat Comm 5: 4240.CrossRefGoogle ScholarPubMed
Zetsche, B, Gootenberg, JS, Abudayyeh, OO, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3): 759771.CrossRefGoogle ScholarPubMed
Zhu, Z, Verma, N, González, F, Shi, Z-D, Huangfu, D. 2015. A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep 4(6): 11031111.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×