Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T12:01:17.763Z Has data issue: false hasContentIssue false

5 - Can Paleomagnetism Distinguish Dynamo Regimes?

from Part II - Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

This section describes a paleomagnetic approach to test whether the geodynamo has existed in distinct operating modes through Earth’s history. A central question surrounds how the geodynamo functions during superchrons, where periods lasting 10’s of millions of years passed with no reversals, versus times closer to the present, when reversals happened four to five times per million years. Five numerical dynamos with characteristic reversal frequencies ranging from 2 to 13 Myr-1 were studied to derive the parameters that discriminate them using datasets routinely acquired by paleomagnetists. Once defined, the feasibility of the approach was tested through field and laboratory work.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 48 - 53
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biggin, A., van Hinsbergen, D., Langereis, C., Straathof, G., & Deenen, M. (2008). Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic. Physics of the Earth and Planetary Interiors, 169(1–4), 319.Google Scholar
Bloxham, J. & Gubbins, D. (1985). The secular variation of Earth’s magnetic field. Nature 317, 777–81.CrossRefGoogle Scholar
Coe, R. S. (1967). The determination of paleo-intensities of the Earth’s magnetic field with emphasis on mechanisms which could cause nonideal behavior in Thellier’s method. Journal of Geomagnetism and Geoelectricity, 19(3), 157–79.Google Scholar
Constable, C. G. & Parker, R. L. (1988). Statistics of the geomagnetic secular variation for the past 5 m.y. Journal of Geophysical Research, 93(B10), 11569–81.CrossRefGoogle Scholar
Courtillot, V. & Besse, J. (1987). Magnetic field reversals, polar wander, and core–mantle coupling. Science, 237(4819), 1140–47.CrossRefGoogle ScholarPubMed
Courtillot, V. & Besse, J. (2004). A long-term octupolar component in the geomagnetic field? (0–200 million years BP), in Timescales of the Paleomagnetic Field, edited by Channell, J. E. T., Kent, D. V., Lowrie, W. & Meert, J. G., AGU, Washington, DC.Google Scholar
Courtillot, V. & Olson, P. L. (2007). Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth and Planetary Science Letters, 260(3–4), 495504.CrossRefGoogle Scholar
Cox, A. (1962). Analysis of present geomagnetic field for comparison with paleomagnetic results. Journal of Geomagnetism and Geoelectricity, 13, 113–19.CrossRefGoogle Scholar
Cox, A. (1969). Confidence limits for the precision parameter k. Geophysical Journal of Royal Astronomical Society, 18, 545–9.Google Scholar
Cox, A. (1970). Latitude dependence of the angular dispersion of the geomagnetic field. Geophysical Journal of the Royal Astronomical Society, 20(3), 253–69.Google Scholar
Cox, A. (1975). The frequency of geomagnetic reversals and the symmetry of the nondipole field. Reviews of Geophysics and Space Physics, 13(3), 3551.CrossRefGoogle Scholar
Creer, K., Irving, E. & Nairn, A. (1959). Palaeomagnetism of the Great Whin Sill. Geophysical Journal of the Royal Astronomical Society, 2, 306–23.Google Scholar
Cronin, M., Tauxe, L., Constable, C., Selkin, P. & Pick, T. (2001). Noise in the quiet zone. Earth and Planetary Science Letters, 190(1–2), 1330.Google Scholar
de Groot, L. V., Biggin, A. J., Dekkers, M. J., Langereis, C. G. & Herrero-Bervera, E. (2013). Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record. Nature Communications, 4, 17.Google Scholar
de Groot, L. V., Pimentel, A. & di Chiara, A. (2016). The multimethod palaeointensity approach applied to volcanics from Terceira: Full-vector geomagnetic data for the past 50 kyr. Geophysical Journal International, 206(1), 590604.CrossRefGoogle Scholar
Driscoll, P. E. & Evans, D. A. D. (2016). Frequency of Proterozoic geomagnetic superchrons. Earth and Planetary Science Letters, 437, 914.Google Scholar
Driscoll, P. E. & Olson, P. L. (2011). Superchron cycles driven by variable core heat flow. Geophysical Research Letters, 38(9), L09304.CrossRefGoogle Scholar
Eide, E. & Torsvik, T. (1996). Paleozoic supercontinental assembly, mantle flushing, and genesis of the Kiaman Superchron. Earth and Planetary Science Letters, 144(3–4), 389402.Google Scholar
Elston, D. P., Enkin, R. J., Baker, J. & Kisilevsky, D. K. (2002). Tightening the belt: Paleomagnetic-stratigraphic constraints on deposition, correlation, and deformation of the Middle Proterozoic (ca. 1.4 Ga) Belt-Purcell Supergroup, United States and Canada. Geological Society of America Bulletin, 114(5), 619–38.2.0.CO;2>CrossRefGoogle Scholar
Fisher, R. A. (1953). Dispersion on a sphere. Proceedings of the Royal Society of London, Series A, 217, 295305.CrossRefGoogle Scholar
Gallet, Y. & Hulot, G. (1997). Stationary and nonstationary behaviour within the geomagnetic polarity time scale. Geophysical Research Letters, 24(15), 1875–8.Google Scholar
Gallet, Y., Pavlov, V. E., Halverson, G. & Hulot, G. (2012). Toward constraining the long-term reversing behavior of the geodynamo: A new ‘Maya’ superchron ~1 billion years ago from the magnetostratigraphy of the Kartochka Formation (southwestern Siberia). Earth and Planetary Science Letters, 339–40, 117–26.Google Scholar
Gilder, S. A., Gomez, J., Chen, Y. & Cogné, J. P. (2008). A new paleogeographic configuration of the Eurasian landmass resolves a paleomagnetic paradox of the Tarim Basin (China). Tectonics, 27, TC1012, doi: 10.1029/2007TC002155.CrossRefGoogle Scholar
Glatzmaier, G., Coe, R., Hongre, L. & Roberts, P. (1999). The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature, 401(6756), 885–90.CrossRefGoogle Scholar
Hagstrum, J. T., Fleck, R. J., Evarts, R. C. & Calvert, A. T. (2017). Paleomagnetism and 40Ar/39Ar geochronology of the Plio-Pleistocene Boring volcanic field: Implications for the geomagnetic polarity time scale and paleosecular variation, Phys. Earth Planet. Inter., 262, 101–15.CrossRefGoogle Scholar
Harrison, C. (1995). Secular variation of the earth’s magnetic field. Journal of Geomagnetism and Geoelectricity, 47, 131–47.CrossRefGoogle Scholar
Heimpel, M. H., Aurnou, J. M., Al-Shamali, F. M. & Gomez-Perez, N. (2005). A numerical study of dynamo action as a function of spherical shell geometry. Earth and Planetary Science Letters, 236(1–2), 542–57.CrossRefGoogle Scholar
Hulot, G. & Gallet, Y. (2003). Do superchrons occur without any palaeomagnetic warning? Earth and Planetary Science Letters, 210(1–2), 191201.Google Scholar
Irving, E. & Ward, M. (1964). A statistical model of the geomagnetic field. Pure and Applied Geophysics, 57(1), 4752.CrossRefGoogle Scholar
Jackson, A. & Bloxham, J. (1991). Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field. Geophysical Journal International, 105(1), 199212.Google Scholar
Jacobs, J. (2001). The cause of superchrons. Astronomy & Geophysics, 42(6), 630.Google Scholar
Landeau, M., Aubert, J. & Olson, P. L. (2017). The signature of inner-core nucleation on the geodynamo. Earth and Planetary Science Letters, 465, 193204.Google Scholar
Larson, R. (1991). Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 19(6), 547.2.3.CO;2>CrossRefGoogle Scholar
Larson, R. & Olson, P. (1991). Mantle plumes control magnetic reversal frequency. Earth and Planetary Science Letters, 107(3–4), 437–47.Google Scholar
Lhuillier, F. & Gilder, S. A. (2013). Quantifying paleosecular variation: Insights from numerical dynamo simulations. Earth and Planetary Science Letters, 382, 8797.Google Scholar
Lhuillier, F., Gilder, S. A., Wack, M., He, K., Petersen, N., Singer, B. S., Jicha, B. R., Schaen, A. J. & Colon, D. (2016). More stable yet bimodal geodynamo during the Cretaceous superchron? Geophysical Research Letters, 43(12), 6170–7.Google Scholar
Lhuillier, F., Hulot, G. & Gallet, Y. (2013). Statistical properties of reversals and chrons in numerical dynamos and implications for the geodynamo. Physics of the Earth and Planetary Interiors, 220, 1936.Google Scholar
Lhuillier, F., Shcherbakov, V., Gilder, S. A. & Hagstrum, J. T. (2017). Variability of the 0–3 Ma palaeomagnetic field observed from the Boring Volcanic Field of the Pacific Northwest. Geophysical Journal International, 211, 6979.Google Scholar
Linder, J. & Gilder, S. A. (2011). Geomagnetic secular variation recorded by sediments deposited during the Cretaceous normal superchron at low latitude. Physics of the Earth and Planetary Interiors, 187, 245–60.Google Scholar
Linder, J. M. & Gilder, S. A. (2012). Latitude dependency of the geomagnetic secular variation S parameter: A mathematical artifact. Geophysical Research Letters, 39, L02308, doi: 10.1029/2011GL050330.Google Scholar
Loper, D. & McCartney, K. (1986). Mantle plumes and the periodicity of magnetic field reversals. Geophysical Research Letters, 13(13), 1525–8.Google Scholar
McElhinny, M. & Merrill, R. (1975). Geomagnetic secular variation over the past 5 My. Reviews of Geophysics, 13(5), 687708.CrossRefGoogle Scholar
McFadden, P. & McElhinny, M. (1984). A physical model for palaeosecular variation. Geophysical Journal of the Royal Astronomical Society, 78(3), 809–30.Google Scholar
McFadden, R. & Merrill, R. (1986). Geodynamo energy source constraints from palaeomagnetic data. Physics of the Earth and Planetary Interiors, 43(1), 2233.CrossRefGoogle Scholar
McFadden, P., Merrill, R. & McElhinny, M. (1988). Dipole/quadrupole family modeling of paleosecular variation. Journal of Geophysical Research, 93(B10), 11583–8.Google Scholar
Olson, P. L. (2007). Gravitational dynamos and the low-frequency geomagnetic secular variation. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20160–66.Google Scholar
Olson, P. L. & Amit, H. (2015). Mantle superplumes induce geomagnetic superchrons. Frontiers in Earth Science, 3, 111.Google Scholar
Olson, P. L., Driscoll, P. E. & Amit, H. (2009). Dipole collapse and reversal precursors in a numerical dynamo. Physics of the Earth and Planetary Interiors, 173, 121140.CrossRefGoogle Scholar
Olson, P. L., Deguen, R., Hinnov, L. A. & Zhong, S. (2013). Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic. Physics of Earth and Planetary Interiors, 214, 87103.CrossRefGoogle Scholar
Olson, P. L., Glatzmaier, G. A. & Coe, R. S. (2011). Complex polarity reversals in a geodynamo model. Earth and Planetary Science Letters, 304(1–2), 168–79.Google Scholar
Pavlov, V. & Gallet, Y. (2005). A third superchron during the Early Paleozoic. Episodes, 28(2), 7884.CrossRefGoogle Scholar
Pavlov, V. E. & Gallet, Y. (2010). Variations in geomagnetic reversal frequency during the Earth’s middle age. Geochemistry, Geophysics, Geosystems, 11(1), Q01Z10, doi: 10.1029/2009GC002583.Google Scholar
Riisager, J., Perrin, M., Riisager, P. & Vandamme, D. (2001). Paleomagnetic results and paleointensity of Late Cretaceous Madagascan basalt. Journal of African Earth Sciences, 32(3), 503–18.Google Scholar
Roberts, P. H. & Glatzmaier, G. A. (2001). The geodynamo, past, present and future. Geophysical and Astrophysical Fluid Dynamics, 94(1–2), 4784, doi: 10.1080/03091920108204131Google Scholar
Tarduno, J., Cottrell, R. & Smirnov, A. (2002). The Cretaceous superchron geodynamo: Observations near the tangent cylinder. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14020–25.Google ScholarPubMed
Tauxe, L. & Kent, D. V. (2004). A simplified statistical model for the geomagnetic field and the detection of shallow bias, in Timescales of the Paleomagnetic Field, AGU, Washington, DC, pp. 101–15.Google Scholar
Tauxe, L., Pick, T. & Kok, Y. S. (1995). Relative paleointensity in sediments: A pseudo-Thellier approach. Geophysical Research Letters, 22(21), 2885–8.Google Scholar
Tauxe, L. & Staudigel, H. (2004). Strength of the geomagnetic field in the Cretaceous normal superchron: New data from submarine basaltic glass of the Troodos Ophiolite. Geochemistry, Geophysics, Geosystems, 5(2), doi: 10.1029/2003GC000635.CrossRefGoogle Scholar
Thellier, E. & Thellier, O. (1959). Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Géophysique, 15, 285376.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×