Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T07:00:40.223Z Has data issue: false hasContentIssue false

Part II - Geophysical Techniques

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aki, K. and Richards, P. G. (2002). Quantitative seismology. Sausalito, CA: University Science Books.Google Scholar
Al Hosni, M., Caspari, E., Pevzner, R., Daley, T. M., and Gurevich, B. (2016a). Case history: Using time‐lapse vertical seismic profiling data to constrain velocity–saturation. Geophysical Prospecting, 64(4): 9871000.CrossRefGoogle Scholar
Al Hosni, M., Vialle, S., Gurevich, B., and Daley, T. M. (2016b). Estimation of rock frame weakening using time-lapse crosswell: The Frio Brine Pilot Project. Geophysics, 81: B235B245. DOI:10.1190/GEO2015-0684.1.CrossRefGoogle Scholar
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 146: 5462.Google Scholar
Arts, R., Eiken, O., Chadwick, A., Zweigel, P., van der Meer, L., and Zinszner, B. (2004). Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy, 29: 13831392.CrossRefGoogle Scholar
Avseth, P., Dvorkin, J., Mavko, G., and Rykkje, J. (2000). Rock physics diagnostic of North Sea sands: Link between microstructure and seismic properties. Geophysical Research Letters, 27: 27612764. DOI:10.1029/ 1999GL008468.CrossRefGoogle Scholar
Batzle, M., and Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57: 13961408.CrossRefGoogle Scholar
Benson, S. (2008). Multi-phase flow of CO2 and brine in saline aquifers. Expanded Abstracts, Society of Exploration Geophysicists, 27: 2839. DOI:10.1190/1.3063934.Google Scholar
Benson, S., Tomutsa, L., Silin, D., Kneafsey, T., and Miljkovic, L. (2005). Core scale and pore scale studies of carbon dioxide migration in saline formations. Lawrence Berkeley National Laboratory Report, LBNL-59082. http://repositories.cdlib.org/lbnl/LBNL-59082Google Scholar
Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., et al. (2012). Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics, 77(6): B253B267.CrossRefGoogle Scholar
Berryman, J. G. (1995). Mixture theories for rock properties. In Ahrens, T. J. (ed.), Rock physics & phase relations: A handbook of physical constants. Washington, DC: American Geophysical Union. DOI:10.1029/RF003, 205–228.Google Scholar
Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low-frequency range. Journal of the Acoustical Society of America, 28(2): 168178.CrossRefGoogle Scholar
Carrigan, C. R., Yang, X., LaBrecque, D. J., et al. (2013). Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs. International Journal of Greenhouse Gas Control, 18: 401408. http://dx.doi.org/10.1016/j.ijggc.2013.04.016.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G. A., and White, J. C. (2016). High-resolution imaging and characterization of a CO2 layer at the Sleipner CO2 storage operation, North Sea using time-lapse seismics. First Break, 34(2): 7785.CrossRefGoogle Scholar
Cook, P. J., ed. (2014). Geologically storing carbon: Learning from the Otway Project experience. Melbourne: CSIRO Publishing.CrossRefGoogle Scholar
Dafflon, B., Wu, Y., Hubbard, S. S., et al. (2012). Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical method. Environmental Science and Technology 47(1): 314321.CrossRefGoogle Scholar
Daley, T. M., Solbau, R. D., Ajo-Franklin, J. B., and Benson, S. M. (2007). Continuous active-source monitoring of CO2 injection in a brine aquifer. Geophysics, 72(5): A57–A61. DOI:10.1190/1.2754716.CrossRefGoogle Scholar
Daley, T. M., Myer, L. R., Peterson, J. E., Majer, E. L., and Hoversten, G. M. (2008). Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer. Environmental Geology, 54: 16571665. DOI:10.1007/s00254-007–0943-z.CrossRefGoogle Scholar
Daley, Thomas M., Ajo-Franklin, J. B., and Doughty, C. (2011). Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine pilot. International Journal of Greenhouse Gas Control, 5: 10221030. DOI:10.1016/j.ijggc.2011.03.002.CrossRefGoogle Scholar
Dutta, N. C., and Seriff, A. J. (1979). On White’s model of attenuation in rocks with partial gas saturation. Geophysics, 44: 18061812.CrossRefGoogle Scholar
Dvorkin, J., and Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics, 61: 13631370. DOI:10.1190/1 .1444059.CrossRefGoogle Scholar
Gasperikova, E., and Hoversten, G. M. (2008). Gravity monitoring of CO2 movement during sequestration: Model studies. Geophysics, 73(6): WA105WA112. DOI:10.1190/1.2985823.CrossRefGoogle Scholar
Gassmann, F. (1951). On elasticity of porous media. Reprinted in Pelissier, M. A., Hoeber, H., van de Coevering, N., and Jones, I. F. (eds.), Classics of elastic wave theory. Geophysics Reprint Series No. 24, Society of Exploration Geophysicists, 2007.Google Scholar
Guéguen, Y., and Palciauskas, G. (1994). Introduction to the physics of rocks. Princeton, NJ: Princeton University Press.Google Scholar
Hill, R. (1963). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11: 357372.CrossRefGoogle Scholar
Hooke, R. (1678). Potentia Restitutiva, or Spring. Reprinted in Pelissier, M. A., Hoeber, H., van de Coevering, N., and Jones, I. F. (eds.), Classics of elastic wave theory. Geophysics Reprint Series No. 24, Society of Exploration Geophysicists, 2007, 5567.Google Scholar
Hovorka, S. D., Doughty, C., Benson, S. M., et al. (2006). Measuring permanence of CO2 storage in saline formations: The Frio experiment. Environmental Geoscience, 13(2): 105121.CrossRefGoogle Scholar
Hovorka, S. D., Meckel, T., and Treviño, R. H. (2013). Monitoring a large-volume injection at Cranfield, Mississippi–Project design and recommendations. International Journal of Greenhouse Gas Control, 18: 345360.CrossRefGoogle Scholar
IPCC. ( 2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B.,Google ScholarGoogle Scholar
Johnston, D. H. (2013). Practical applications of time-lapse seismic data. Society of Exploration Geophysicists Distinguished Instructor Series No. 16. http://dx.doi.org/10.1190/1.9781560803126CrossRefGoogle Scholar
Landrot, G., Ajo-Franklin, J., Yang, L., Cabrini, S., and Steefel, C. I. (2012). Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization. Chemical Geology, 318319: 113125.CrossRefGoogle Scholar
Lebedev, M., Toms-Stewart, J., Clennell, B., et al. (2009). Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities. Leading Edge, 28: 2427.CrossRefGoogle Scholar
Lebedev, M., Wilson, M. E. J., and Mikhaltsevitch, V. (2014). An experimental study of solid matrix weakening in water-saturated Savonnieres limestone. Geophysical Prospecting, 62: 12531265. DOI:10.1111/1365-2478.12168.CrossRefGoogle Scholar
Lemmon, E. W., McLinden, M. O., and Friend, D. G. (2005). Thermophysical properties of fluid systems. In Linstrom, P. J. and Mallard, W. G. (eds.), Chemistry web book. NIST Standard Reference Database Number 69. National Institute of Standards and Technology.Google Scholar
Lesmes, D. P., and Friedman, S. P. (2005). Relationships between the electrical and hydrological properties of rocks and soils. In Rubin, Y. and Hubbard, S. (eds.), Hydrogeophysics. Dordrecht, The Netherlands: Springer.Google Scholar
Mavko, G., Mukerji, T., and Dvorkin, J. (1998). The rock physics handbook: Tools for seismic analysis in porous media. Cambridge: Cambridge University Press.Google Scholar
Müller, T. M., and Gurevich, B. (2004). One‐dimensional random patchy saturation model for velocity and attenuation in porous rocksGeophysics69(5): 11661172. https://doi.org/10.1190/1.1801934CrossRefGoogle Scholar
Müller, T. M.Gurevich, B., and Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks: A reviewGeophysics75(5): 75A14775A164. DOI:10.1190/1.3463417.CrossRefGoogle Scholar
Nabighian, M., ed. (1991). Electromagnetic methods in applied geophysics, Vol. 2: Applications. In Society of Exploration Geophysicists Investigations in Geophysics. DOI:10.1190/1.9781560802686.CrossRefGoogle Scholar
Nakatsuka, Y., Xue, Z., Garcia, H., and Matsuoka, T. (2010). Experimental study on monitoring and quantification of stored CO2 in saline formation using resistivity measurements. International Journal of Greenhouse Gas Control, 4: 209216. http://dx.doi.org/10.1016/j.ijggc.2010.01.001CrossRefGoogle Scholar
Pride, S. R. (2005). Relationships between seismic and hydrological properties. In Rubin, Y. and Hubbard, S. S. (eds.), Hydrogeophysics. Water Science and Technology Library, Vol. 50. Dordrecht: Springer, 253290. DOI:10.1007/1-4020-3102-5_9.CrossRefGoogle Scholar
Pride, S. R., Berryman, J. G., and Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 109: B01201. DOI : 10.1029/2003JB002639.CrossRefGoogle Scholar
Pride, S. R., Berryman, J. G., Commer, M., Nakagawa, S., Newman, G. A., and Vasco, D. W. (2016). Changes in geophysical properties caused by fluid injection into porous rocks: Analytical models. Geophysical Prospecting, 65(3). DOI:10.1111/1365–2478.12435.CrossRefGoogle Scholar
Rubin, Y., and Hubbard, S., eds. (2005). Hydrogeophysics, Water Science and Technology Library, Vol. 50. Dordrecht, The Netherlands: Springer.Google Scholar
Rutqvist, J. (2012). The geomechanics of CO2 storage in deep sedimentary formations. Geotechnical and Geological Engineering, 30(3): 525551. DOI:10.1007/s10706-011–9491-0.CrossRefGoogle Scholar
Saito, H., Nobuoka, D., Azuma, H., Xue, Z., and Tanase, D. (2006). Time-lapse crosswell seismic tomography for monitoring injected CO2 in an onshore aquifer, Nagaoka, Japan. Exploration Geophysics, 37: 3036.CrossRefGoogle Scholar
Sen, P. N., Scala, C., and Cohen, M. H. (1981). A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics, 46: 781795.CrossRefGoogle Scholar
Sen, P. N., Goode, P. A., and Sibbit, A. (1988). Electrical conduction in clay bearing sandstones at low and high salinities. Journal of Applied Physics, 63: 48324840.CrossRefGoogle Scholar
Sethian, J. A., and Popovici, A. M. (1999). 3-D traveltime computation using the fast marching method. Geophysics, 64(2): 516523.CrossRefGoogle Scholar
Smith, T. M., Sondergeld, C. H., and Rai, C. S. (2003). Gassmann fluid substitutions: A tutorial. Geophysics, 68: 430440.CrossRefGoogle Scholar
Stokes, G. G. (1845). On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Reprinted in Pelissier, M. A., Hoeber, H., van de Coevering, N., and Jones, I. F. (eds.), Classics of elastic wave theory. Geophysics Reprint Series No. 24. Society of Exploration Geophysicists, 2007. 125161.Google Scholar
Toms, J., Müller, T. M., and Gurevich, B. (2007). Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting, 55(5): 671678.  DOI: 10.1111/j.1365-2478.2007.00644.x.CrossRefGoogle Scholar
Vanorio, T. (2015). Recent advances in time-lapse, laboratory rock physics for the characterization and monitoring of fluid-rock interactions. Geophysics, 80(2): WA49WA59. DOI:10.1190/geo2014-0202.1.CrossRefGoogle Scholar
Vanorio, T., Mavko, G., Vialle, S., and Spratt, K. (2010). The rock physics basis for 4D seismic monitoring of CO2 fate: Are we there yet? Leading Edge, 29: 156162.CrossRefGoogle Scholar
Vanorio, T., Nur, A., and Ebert, Y. (2011). Rock physics analysis and time-lapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks. Geophysics, 76(5): 2333. DOI:10.1190/ geo2010-0390.1.CrossRefGoogle Scholar
Vialle, S., and Vanorio, T. (2011). Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2‐saturated water. Geophysical Research Letters, 38: L01302. DOI:10.1029/2010GL045606.CrossRefGoogle Scholar
Wang, Z. (2001). Fundamentals of seismic rock physics. Geophysics, 66: 398412.CrossRefGoogle Scholar
Wang, Z., Cates, M. E., and Langan, R. T. (1998). Seismic monitoring of a CO2 flood in carbonate reservoir: A rock physics study. Geophysics, 63: 16041617.CrossRefGoogle Scholar
Waxman, M. H., and Smits, L. J. M. (1968). Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8: 107122.CrossRefGoogle Scholar
White, J. E. (1975). Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40: 224232.CrossRefGoogle Scholar
Worthington, P. F. (1985). The evolution of shaly-sand concepts in reservoir evaluation. Log Analyst, 26: 2340, SPWLA-1985-vXXVIn1a2.Google Scholar
Xue, Z., Tanase, D., and Watanabe, J. (2006). Estimation of CO2 saturation from time-lapse CO2 well logging in an onshore aquifer, Nagaoka, Japan. Exploration Geophysics, 37: 1929.CrossRefGoogle Scholar

References

Bertrand, A., Folstad, P. G., Lyngnes, B., et al. (2014). Ekofisk life-of-field seismic: Operations and 4D processing. Leading Edge, 33: 142148.CrossRefGoogle Scholar
Davis, T. L., and Martin, M. A. (1987). Shear wave birefringence: A new tool for evaluating fractured reservoirs. Leading Edge, 6: 2228.Google Scholar
Elde, R., Roy, S. S., Andersen, C. F., and Andersen, T. (2016). Grane permanent reservoir monitoring – meeting expectations! In 78th EAGE Conference, Expanded Abstract, Tu LHR2 02.CrossRefGoogle Scholar
Fjellanger, J. P., Bøen, F., and Rønning, K. J. (2006). Successful use of converted wave data for interpretation and well optimization on Grane. Expanded Abstracts, Society of Exploration Geophysicists, 11381148.CrossRefGoogle Scholar
Gestel, J-P, Kommedal, J. H., Barkved, O. I., Mundal, I., Bakke, R., and Best, K. D. (2008). Continuous seismic surveillance of Valhall Field. Leading Edge, 27: 16161621.CrossRefGoogle Scholar
Granli, J. R., Arntsen, B., Sollid, A., and Hilde, E. (1999). Imaging through gas-filled sediments using marine shear-wave data. Geophysics, 64: 668677.CrossRefGoogle Scholar
Landrø, M. (1999). Repeatability issues of 3-D VSP data. Geophysics, 64: 16731679.CrossRefGoogle Scholar
Landrø, M., Amundsen, L., and Barker, D. (2011). High-frequency signals from air-gun arrays. Geophysics, 76: Q19Q27.CrossRefGoogle Scholar
Landrø, M., Ni, Y., and Amundsen, L. (2016). Reducing high-frequency ghost-cavitation from marine air-gun arrays. Geophysics, 81: P47–P60.CrossRefGoogle Scholar
Landrø, M., Hansteen, F., and Amundsen, L. (2017). Detecting gas leakage using high-frequency signals generated by air-gun arrays. Geophysics, 82: A7A15.CrossRefGoogle Scholar
Misaghi, A., Landrø, M., and Petersen, S. (2007). Overburden complexity and repeatability of seismic data: Impacts of positioning errors at the Oseberg Field, North Sea. Geophysical Prospecting, 55: 365379.CrossRefGoogle Scholar
Rognø, H., Kristensen, Å., and Amundsen, L. (1999). The Statfjord 3-D, 4_C OBC survey. Leading Edge, 18: 13011305.CrossRefGoogle Scholar
Thompson, M., Andersen, M., Skogland, S. M., Courtial, C., and Biran, V. B. (2016). Time-lapse observations from PRM at Snorre. In 78th EAGE Conference, Expanded Abstract Tu LHR2 01.CrossRefGoogle Scholar

References

Aki, K., and Richards, P. G. (1980). Quantitative seismology. San Francisco: Freeman and Sons.Google Scholar
Bamler, R., and Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14: R1–R54.CrossRefGoogle Scholar
Berardino, P., Fornaro, G., and Lanari, R. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40: 23752383.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G. A., Williams, J. D. O., and Noy, D. J. (2012). Measuring pressure performance of a large saline aquifer during industrial-scale CO2 injection: The Utsira Sand, Nowegian North Sea. International Journal of Greenhouse Gas Control, 10: 374388.CrossRefGoogle Scholar
Czarnogorska, M., Samsonov, S., and White, D. (2016). Airborne and spaceborne remote sensing characterization for Aquistore carbon capture and storage site. Canadian Journal of Remote Sensing, 42: 274291. DOI:10.1080/07038992.2016.1171131.CrossRefGoogle Scholar
Davis, P. M. (1983). Surface deformation associated with a dipping hydrofracture. Journal of Geophysical Research, 88: 58265834.CrossRefGoogle Scholar
Dzurisin, D. (2007). Volcano deformation: Geodetic monitoring techniques. Chichester: Springer.Google Scholar
Falorni, G, Hsiao, V., Iannaconne, J., Morgan, J., and Michaud, J.-S. (2014). InSAR monitoring of ground deformation at the Illinois Basin Decatur Project. In Carbon dioxide capture for storage in deep geological formations, 4. Thatcham, Berks: CPL Press.Google Scholar
Ferretti, A. (2014). Satellite InSAR data: Reservoir monitoring from space. Houten, The Netherlands: EAGE Publications.Google Scholar
Ferretti, A., Prati, C., and Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38: 22022212.CrossRefGoogle Scholar
Ferretti, A., Prati, C., and Rocca, F. (2001). Permanent scatterers in SAR inferometry. IEEE Transactions on Geoscience and Remote Sensing, 39: 820.CrossRefGoogle Scholar
Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., and Massonnet, D. (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation.Noordwijk, The Netherlands: ESA Publications, TM-19.Google Scholar
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49: 34603470.CrossRefGoogle Scholar
Finley, R. J., Greenberg, S. D., Frailey, S. M., Krapac, I. G., Leetaru, H. E., and Marsteller, S. (2011). The path to a successful one-million tonne demonstration of geological sequestration: Characterization, cooperation, and collaboration. Energy Procedia, 4: 47704776.CrossRefGoogle Scholar
Finley, R. J., Frailey, S. M., Leetaru, H. E., Senel, O., Coueslan, M. L., and Marsteller, S. (2013). Early operational experience at a one-million tonne CCS demonstration project, Decatur, Illinois. Energy Procedia, 37: 61496155.CrossRefGoogle Scholar
Fujiwara, S., Nishimura, T., Murakami, M., Nakagawa, H., Tobita, M., and Rosen, P. A. (2000). 2.5-D surface deformation of M 6.1 earthquake near Mt. Iwate detected by SAR interferometry. Geophysical Research Letters, 27: 20492052.CrossRefGoogle Scholar
Funning, G. J., Parsons, B., Wright, T. J., Jackson, J. A., and Fielding, E. J. (2005). Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal of Geophysical Research, 110: B09406. DOI:10.1029/2004JB003338.CrossRefGoogle Scholar
Hovorka, S. D., Meckel, T. A., and Trevino, R. H. (2013). Monitoring large-volume injection at Cranfield, Mississippi-Project design and recommendations. International Journal of Greenhouse Gas Control, 18: 345360. DOI:10.1016/j.ijggc.2013.03.021.CrossRefGoogle Scholar
Iding, M., and Ringrose, P. (2010). Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. International Journal of Greenhouse Gas Control, 4: 242248. DOI:10.1016/j.ijggc.2009.10.016.CrossRefGoogle Scholar
Kaven, J. O., Hickman, S. H., McGarr, A. F., Walter, S., and Ellsworth, W. L. (2014). Seismic monitoring at the Decatur, IL, CO2 sequestration demonstration site. Energy Procedia, 63: 42644272.CrossRefGoogle Scholar
Klemm, H., Quseimi, I., Novali, F., Ferretti, A., and Tamburini, A. (2010). Monitoring horizontal and vertical surface deformation over a hydrocarbon reservoir by PSInSAR. First Break, 28: 2937.CrossRefGoogle Scholar
Lanari, R., Mora, O., Manunta, M., Mallorqui, J. J., Berardino, P., and Sanosti, E. (2004). A small-baseline approach for investigating deformation on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42: 13771386.CrossRefGoogle Scholar
Massonnet, D., and Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36: 441500.CrossRefGoogle Scholar
Mathieson, A., Midgley, J., Dodds, K., Wright, I., Ringrose, P., and Saoul, N. (2010). CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Leading Edge, 29(2): 216222.CrossRefGoogle Scholar
Mathieson, A. Midgley, J., Wright, I., Saoula, N., and Ringrose, P. (2011). In Salah CO2 storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia, 4: 35963603.CrossRefGoogle Scholar
McManamon, P. (2015). Field fuide to Lidar. Bellingham, WA: SPIE Press.CrossRefGoogle Scholar
Menke, W. (1989). Geophysical data analysis: Discrete inverse theory. San Diego: Academic Press.Google Scholar
Misra, P., and Enge, P. (2001). Global positioning system: Signals, measurements, and performance. Lincoln, MA: Ganga-Jamuna Press.Google Scholar
Norford, B., Haidl, R., Bezys, F.M., Cecile, M., McCabe, H., and Paterson, D. (1994). Middle Ordovician to Lower Devonian strata of the Western Canada Sedimentary Basin. In Mossop, G. and Shetsen, I. (comp. eds.), Geological Atlas of the Western Canada Sedimentary Basin. Edmonton, Alberta: Canadian Society of Petroleum Geologists, Calgary, Alberta and Alberta Research Council, 109127.Google Scholar
Petrovski, I. G., and Tsujii, T. (2012). Digital satellite navigation and geophysics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical recipes. Cambridge: Cambridge University Press.Google Scholar
Ramirez, A., and Foxall, W. (2014). Stochastic inversion of InSAR data to assess the probability of pressure penetration into the lower caprock at In Salah. International Journal of Greenhouse Gas Control, 27, 4258.CrossRefGoogle Scholar
Rosen, P. A., Hensley, S., Joughin, I. R., et al. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88: 333382.CrossRefGoogle Scholar
Rucci, A., Vasco, D. W., and Novali, F. (2013). Monitoring the geologic storage of carbon dioxide using multicomponent SAR interferometry. Geophysical Journal International, 193(1): 197208.CrossRefGoogle Scholar
Rutqvist, J. (2011). Status of TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Computational Geoscience, 37: 739750.CrossRefGoogle Scholar
Samsonov, S., and d’Oreye, N. (2012). Multidimensional time series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province: Geophysical Journal International, 191: 10951108. DOI:10.1111/j.1365-246X.2012.05669.x.Google Scholar
Samsonov, S., van der Koij, M., and Tiampo, K. (2011). A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Computers and Geosciences, 37: 10831091.CrossRefGoogle Scholar
Samsonov, S., Gonzalez, P., Tiampo, K., and d’Oreye, N. (2013a). Methodology for spatio-temporal analysis of ground deformation occurring near Rice Lake (Saskatchewan) observed by RADARSAT-2 DInSAR during 2008–2011. Canadian Journal of Remote Sensing, 39: 2733.CrossRefGoogle Scholar
Samsonov, S., d’Oreye, N., and Smets, B. (2013b). Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23: 142154.CrossRefGoogle Scholar
Samsonov, S., Gonzalez, P., Tiampo, K., and d’Oreye, N. (2014a). Modeling of fast ground subsidence observed in southern Saskatchewan (Canada) during 2008–2011. Natural Hazards and Earth System Sciences, 14: 247257. DOI:doi:10.5194/nhess-14–247-2014.CrossRefGoogle Scholar
Samsonov, S., d’Oreye, N., Gonzalez, P., Tiampo, K., Ertolahti, L., and Clague, J. (2014b). Rapidly accelerating subsidence in the Greater Vancouver region from two decades of ERS-ENVISAT- RADARSAT-2 DInSAR measurements. Remote Sensing of Environment, 143: 180191. DOI:10.1016/j.rse.2013.12.017.CrossRefGoogle Scholar
Samsonov, S. V., Tiampo, K. F., Camacho, A. G., Fernandez, J., and Gonzalez, P. J. (2014c). Spatiotemporal analysis and interpretation of 1993–2013 ground deformation at Campi Flegrei, Italy, observed by advanced DInSAR. Geophysical Research Letters, 41: 61016108. DOI:10.1002/2014GL060595.CrossRefGoogle Scholar
Samsonov, S. V., Trishchenko, A. P., Tiampo, K. Tiampo, , Gonzalez, P. J., Zhang, Y., and Fernandez, J. (2014d). Removal of systematic seasonal atmospheric signal from interferometric synthetic aperture radar ground deformation time series. Geophysical Research Letters, 41: 61236130. DOI:10.1002/2014GL061307.CrossRefGoogle Scholar
Samsonov, S., Czarnogorska, M., and White, D. (2015). Satellite interferometry for high-precision detection of ground deformation at a carbon dioxide storage site. International Journal of Greenhouse Gas Control, 42: 188199. DOI:10.1016/j.ijggc.2015.07.034.CrossRefGoogle Scholar
Samsonov, S., Tiampo, K., and Feng, W. (2016a). Fast subsidence in downtown of Seattle observed with satellite radar. Remote Sensing Applications: Society and Environment, 4: 179187. DOI:10.1016/j.rsase.2016.10.001.CrossRefGoogle Scholar
Samsonov, S. V., Lantz, T. C., Kokelj, S. V., and Zhang, Y. (2016b). Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar. The Cryosphere, 10: 799810. DOI:10.5194/tc-10–799-2016.CrossRefGoogle Scholar
Shi, J.-Q., Sinayuc, C., Durucan, S., and Korre, A. (2012). Assessment of carbon dioxide plume behavior within the storage reservoir and the lower caprock around the KB-502 injection well at In Salah. International Journal of Greenhouse Gas Control, 7: 115126.CrossRefGoogle Scholar
Smith, J. R. (1997). Introduction to geodesy: The history and concepts of modern geodesy. New York: John Wiley & Sons.Google Scholar
Tamburini, A., Bianchi, M., Chiara, G., and Novali, F. (2010). Retrieving surface deformation by PSInSAR technology: A powerful tool in reservoir monitoring. International Journal of Greenhouse Gas Control, 4: 928937.CrossRefGoogle Scholar
Teatini, P., Castelletto, N., Ferronato, M., et al. (2011). Geomechanical response to seasonal gas storage in depleted reservoirs: A case study in the Po River basin, Italy. Journal of Geophysical Research, 116: 121.CrossRefGoogle Scholar
Torge, W. and Muller, J. (2012). Geodesy. Berlin: Walter de Gruyter.CrossRefGoogle Scholar
Vasco, D. W., Ferretti, A., and Novali, F. (2008). Estimating permeability from quasi-static deformation: Temporal variations and arrival time inversion. Geophysics, 73: O37O52. DOI:10.1190/1.2978164.CrossRefGoogle Scholar
Vasco, D. W., Rucci, A., Ferretti, A., et al. (2010). Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophysical Research Letters, 37: L03303, 15. DOI:10.1029/2009GL041544.CrossRefGoogle Scholar
White, D. J., Meadows, M., Cole, S., et al. (2011). Geophysical monitoring of the Weyburn CO2 flood: Results during 10 years of injection. Energy Procedia, 4: 36283635.CrossRefGoogle Scholar
Worth, K., White, D., Chalaturnyk, R., et al. (2014). Aquistore project measurement, monitoring and verification: From concept to CO2 injection. Energy Procedia, 63: 32023208. http://dx.doi.org/10.1016/j.egypro.2014.11.345.CrossRefGoogle Scholar
Wright, C. A. (1998). Tiltmeter fracture mapping: From the surface and now downhole. Petroleum Engineer International, 71: 5063.Google Scholar
Wright, T. J., Parsons, B. E., and Lu, Z. (2004). Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 31: 15.CrossRefGoogle Scholar

References

Adams, S. J. (1991). Gas saturation monitoring in North Oman Reservoir using a borehole gravimeter. SPE Journal, 21414: 669678.Google Scholar
Allis, R. G., and Hunt, T. M. (1986). Analysis of exploitation-induced gravity changes at Wairakei Geothermal Field. Geophysics, 51: 16471660.CrossRefGoogle Scholar
Alnes, H. (2015). Gravity surveys over time at Sleipner. Presentation at the 10th IEAGHG Monitoring Network Meeting, June 10–12, 2015. http://ieaghg.org/docs/General_Docs/8_Mon/6_Gravity_surveys_over_time_at_SleipnerSEC.pdfGoogle Scholar
Alnes, H., Eiken, O., and Stenvold, T. (2008). Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73: WA155–WA161.CrossRefGoogle Scholar
Alnes, H., Stenvold, T., and Eiken, O. (2010). Experiences on seafloor gravimetrics and subsidence monitoring above producing reservoirs. In Extended Abstract, 72nd EAGE Conference.CrossRefGoogle Scholar
Alnes, H., Eiken, O., Nooner, S., Stenvold, T., and Zumberge, M. A. (2011). Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume. Energy Procedia, 4: 55045511 (10th International Conference on Greenhouse Gas Control Technologies).CrossRefGoogle Scholar
Ander, M. E., and Chapin, D. A. (1997). Borehole gravimetry: A review. In Extended Abstracts, 67th Annual Society of Exploration Geophysicists Meeting, 531534.CrossRefGoogle Scholar
Arts, R., Chadwick, A., Eiken, O., Thibeau, S., and Nooner, S. (2008). Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26: 6572.CrossRefGoogle Scholar
Bate, D. (2005). 4D reservoir volumetrics: A case study over the Izaute gas storage facility. First Break, 23: 6971.CrossRefGoogle Scholar
Battaglia, M., Gottsmann, J., Carbone, D., and Fernández, J. (2008). 4D volcano gravimetry. Geophysics, 73(6): WA3WA18.CrossRefGoogle Scholar
Brady, J. L., Hare, J. L., Ferguson, J. F., et al. (2008). Results of the world’s first 4D microgravity surveillance of a Waterfloor – Prudhoe Bay, Alaska. SPE Journal, 101762.Google Scholar
Calvo, M., Hinderer, J., Rosat, S., et al. (2014). Time stability of spring and superconducting gravimeters through the analysis of very long gravity records. Journal of Geodynamics, 80: 2033.CrossRefGoogle Scholar
Campos-Enriquez, J. O., Morales-Rodrigues, H. F., Domínguez-Mendez, F., and Birch, F. S. (1998). Gauss’s theorem, mass deficiency at Chicxulub crater (Yucatan, Mexico), and the extinction of the dinosaurs. Geophysics, 63(5): 15851594.CrossRefGoogle Scholar
Carbone, D., Poland, M. P., Diament, M., and Greco, F. (2017). The added value of time-variable microgravimetry to the understanding of how volcanoes work. Earth-Science Reviews, 169: 146179.CrossRefGoogle Scholar
Chadwick, R. A., Arts, R., Eiken, O., Kirby, G. A., Lindeberg, E., and Zweigel, P. (2004). 4D seismic imaging of an injected CO2 plume at the Sleipner Field, central North Sea. In Cartwright, R. J., Stewart, S. A., Lappin, M., and Underhill, J. R., (eds.), 3D seismic technology: Application to the exploration of sedimentary basins. Geological Society, London, Memoirs, 29: 311320. The Geological Society of London.Google Scholar
Chadwick, R. A., Arts, R., and Eiken, O. (2005). 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In Doré, A. G. and Vining, B. A. (eds.), Petroleum geology: North-west Europe and global perspectives: Proceedings of the 6th Petroleum Geology Conference, 13851399.Google Scholar
Chadwick, R.A., Arts, R., Bentham, M., et al. (2009). Review of monitoring issues and technologies associated with the long-term underground storage of carbon dioxide. London: Geological Society, Special Publications, 313: 257275.Google Scholar
Chapin, D. A., and Ander, M. E. (2000). Advances in deep-penetration density logging. Society of Petroleum Engineers Conference Papers, 59698.CrossRefGoogle Scholar
Christiansen, L., Lund, S., Andersen, O. B., Binning, P. J., Rosbjerg, D., and Bauer-Gottwein, P. (2011). Measuring gravity change caused by water storage variations: Performance assessment under controlled conditions. Journal of Hydrology, 402: 6070.CrossRefGoogle Scholar
Debeglia, N., and Dupont, F. (2002). Some critical factors for engineering and environmental microgravity investigations. Journal of Applied Geophysics, 50: 435454.CrossRefGoogle Scholar
Dodds, K., Krahenbuhl, R., Reitz, A., Li, Y., and Hovorka, S. (2013). Evaluating time-lapse borehole gravity for CO2 plume detection at SECARB Cranfield. International Journal of Greenhouse Gas Control, 18: 421429.CrossRefGoogle Scholar
Eiken, O., Stenvold, T., Zumberge, M., Alnes, H., and Sasagawa, G. (2008). Gravimetric monitoring of gas production from the Troll field. Geophysics, 73: WA149WA154.CrossRefGoogle Scholar
Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. A., and Høier, L. (2011). Lessons learned from 14 years of CCS Operations: Sleipner, In Salah and Snøhvit. Energy Procedia, 4: 55415548.CrossRefGoogle Scholar
Eiken, O., Glegola, M., Liu, S., and Zumberge, M. A. (2017). Four decades of gravity monitoring of the Groningen Gas Field. Extended Abstract, First EAGE Workshop on Practical Reservoir Monitoring.CrossRefGoogle Scholar
Ferguson, J. F., Klopping, F. J., Chen, T., Seibert, J. E., Hare, J. L., and Brady, J. L. (2008). The 4D microgravity method for waterflood surveillance: Part 3–4D absolute microgravity surveys at Prudhoe Bay, Alaska. Geophysics, 73(6): WA163WA171.CrossRefGoogle Scholar
Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N., and Kiær, A. F. (2017). 20 years of monitoring CO2 injection at Sleipner. Energy Procedia, 4: 55415548.Google Scholar
Gasperikova, E., and Hoversten, G. M. (2006). A feasibility study of nonseismic geophysical methods for monitoring geologic CO2 sequestration. Leading Edge, October: 12821288.Google Scholar
Gasperikova, E., and Hoversten, G. M. (2008). Gravity monitoring of CO2 movement during sequestration: Model studies. Geophysics, 73(6): WA105WA112.CrossRefGoogle Scholar
Geertsma, J. (1973). Land subsidence above compacting oil and gas reservoirs. Journal of Petroleum Technology, 59(6): 734744.CrossRefGoogle Scholar
Gelderen, M. v, Haagmans, R., and Bilker, M. (1999). Gravity changes and natural gas extraction in Groningen. Geophysical Prospecting, 47: 979993.CrossRefGoogle Scholar
Glegola, M., Didmar, P., Hanea, R. G., et al. (2012). History matching time-lapse surface-gravity and well-pressure data with ensemble smoother for estimating gas field aquifer support: A 3D numerical study. SPE Journal, 161483.CrossRefGoogle Scholar
Goetz, J. F. (1958). A gravity investigation of a sulphide deposit. Geophysics, 23(6): 606623.CrossRefGoogle Scholar
Hare, J. L., Ferguson, J. F., and Brady, J. L. (2008). The 4D microgravity method for waterflood surveillance: Part IV – Modeling and interpretation of early epoch 4D gravity surveys at Prudhoe Bay, Alaska. Geophysics, 73(6): WA173WA180.CrossRefGoogle Scholar
Hauge, V. L., and Kobjørnsen, O. (2015). Bayesian inversion of gravimetric data and assessment of CO2 dissolution in the Utsira Formation. Interpretation, sp1sp10.CrossRefGoogle Scholar
Hunt, T. M., and Kissling, W. M. (1994). Determination of reservoir properties at Wairakei Geothermal Field using gravity change measurements. Journal of Volcanology and Geothermal Research, 63: 129143.CrossRefGoogle Scholar
Hunt, T., Sugihara, M., Sato, T., and Takemura, T. (2002). Measurement and use of the vertical gravity gradient in correcting repeat microgravity measurements for the effects of ground subsidence in geothermal systems. Geothermics, 31: 524543.CrossRefGoogle Scholar
Jacob, T., Bayer, R., Chery, J., and Le Moigne, N. (2010). Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. Journal of Geophysical Research, 115: B06402.CrossRefGoogle Scholar
Jacob, T., Rohmer, J., and Manceau, J.-C. (2016). Using surface and borehole time-lapse gravity to monitor CO2 in saline aquifers: A numerical feasibility study. Greenhouse Gas Science and Technology, 6: 3454.CrossRefGoogle Scholar
Kabirzadeh, H., Kim, J. W., and Sideris, M. G. (2017). Micro-gravimetric monitoring of geological CO2 reservoirs. International Journal of Greenhouse Gas Control, 56: 187193.CrossRefGoogle Scholar
Kabirzadeh, H., Sideris, M. G., Shin, Y. J., and Kim, J. W. (2017). Gravimetric monitoring of confined and unconfined geological CO2 reservoirs. Energy Procedia, 114: 39613968.CrossRefGoogle Scholar
Kim, J. W., Neumeyer, J., Kao, R., and Kabirzadeh, H. (2015). Mass balance monitoring of geological CO2 storage with a superconducting gravimeter: A case study. Journal of Applied Geophysics, 114: 244250.CrossRefGoogle Scholar
Landrø, M., and Zumberge, M. (2017). Estimating saturation and density changes caused by CO2 injection at Sleipner: Using time-lapse seismic amplitude-variation-with-offset and time-lapse gravity. Interpretation, T243T257.CrossRefGoogle Scholar
Lien, M., Agersborg, R., Hille, L. T., Lindgård, J. E., Ruiz, H., and Vatshelle, M. (2017). How 4D gravity and subsidence monitoring provide improved decision making at a lower cost. Extended Abstract, First EAGE Workshop on Practical Reservoir Monitoring.CrossRefGoogle Scholar
Nind, C. J. M., and MacQueen, J. D. (2013). The borehole gravity meter: Development and Results: 10th Biennial International Conference & Exhibition.CrossRefGoogle Scholar
Nooner, S. L. (2005). Gravity changes associated with underground injection of CO2 at the Sleipner storage reservoir in the North Sea, and other marine geodetic studies. PhD thesis, University of California, San Diego.Google Scholar
Nooner, S. L., Eiken, O., Hermanrud, C., Sasagawa, G. S., Stenvold, T., and Zumberge, M. A. (2007). Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. International Journal of Greenhouse Gas Control, 1: 198214.CrossRefGoogle Scholar
Nordquist, G., Protacio, J. A., and Acuna, J. A. (2004). Precision gravity monitoring of the Bulalo geothermal field, Philippines: Independent checks and constraints on numerical simulation. Geothermics, 33: 3756.CrossRefGoogle Scholar
Preuss, K. ed. (1998). Proceedings of the TOUGH Workshop ´98, Berkeley, California, May 4 –6, 1998. Lawrence Berkeley National Laboratory report LBNL-41995.Google Scholar
Pritchett, J. W., and Garg, S. K. (1995). STAR: A geothermal reservoir simulation system: Proceedings of the World Geothermal Congress 1995, Florence, Italy, May 18–31, International Geothermal Association, 29592963.Google Scholar
Ringrose, P. S., Mathieson, A. S., Wright, I. W., et al. (2013). The In Salah CO2 storage project: Lessons learned and knowledge transfer. Energy Procedia, 37: 62266236.CrossRefGoogle Scholar
Sasagawa, G., Crawford, W., Eiken, O., Nooner, S. L., Stenvold, T., and Zumberge, M. A. (2003). A new sea-floor gravimeter. Geophysics, 68(2): 544553.CrossRefGoogle Scholar
Seigel, H. O., Nind, C., Lachapelle, R., Choteau, M., and Giroux, B. (2007). Development of a borehole gravity meter for mining applications. In Milkereit, B. (ed.), Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2114321147.Google Scholar
Sherlock, D., Toomey, A., Hoversten, M., Gasperikova, E., and Dodds, K. (2006). Gravity monitoring of CO2 storage in a depleted gas field: A sensitivity study. Exploration Geophysics, 37: 3743.CrossRefGoogle Scholar
Singhe, A. T., Ursin, J. R., Pusch, G., and Ganzer, L. (2013). Modeling of temperature effects in CO2 injection wells. Energy Procedia, 37: 39273935.CrossRefGoogle Scholar
Sofyan, Y., Kamah, Y., Fujimitsy, Y., Ehara, S., Fukuda, Y., and Taniguchi, M. (2011). Mass variation in outcome to high productionactivity in Kamojang Geothermal Field, Indonesia: A reservoir monitoring with relative and absolute gravimetry. Earth Planets and Space, 63: 11571167.CrossRefGoogle Scholar
Stenvold, T., Eiken, O., Zumberge, M. A., Sasagawa, G. S., and Nooner, S. L. (2006). High-precision relative depth and subsidence mapping from seafloor water-pressure measurements. SPE Journal, 11(3): 380389.CrossRefGoogle Scholar
Sugihara, M., and Ishido, T. (2008). Geothermal reservoir monitoring with a combination of absolute and relative gravimetry. Geophysics, 73(6): WA37WA47.CrossRefGoogle Scholar
Sugihara, M., Nawa, K., Nishi, Y., Ishido, T., and Soma, N. (2013). Continuous gravity monitoring for CO2 geo-sequestration. Energy Procedia, 37: 43024309.CrossRefGoogle Scholar
Torge, W. (1989). Gravimetry. Berlin: Walter de Gruyter.Google Scholar
Van den Beukel, A. (2014). Integrated reservoir monitoring of the Ormen Lange field: Time lapse seismic, time lapse gravity and seafloor deformation monitoring. The Biennial Geophysical Seminar, NPF, Kristiansand.Google Scholar
Van Opstal, G. H. C. (1974). The effect of base-rock rigidity on subsidence due to reservoir compaction. In Proceedings of the 3rd Congress of the International Society for Rock Mechanics, Denver, II, Part B, 1102–1111.Google Scholar
Vevatne, J. N., Alnes, H., Eiken, O., Stenvold, T., and Vassenden, F. (2012). Use of field-wide seafloor time-lapse gravity in history matching the Mikkel gas condensate field. Extended Abstract, 74th EAGE Conference.CrossRefGoogle Scholar
Wilson, C. R., Scanlon, B., Sharp, J., Longuevergne, L., and Wu, H. (2012). Field test of the superconducting gravimeter as a hydrologic sensor. Ground Water, 50(3): 442449.CrossRefGoogle ScholarPubMed
Yin, Q., Krahenbuhl, R., Li, Y., Wagner, S., and Brady, J. (2016). Time-lapse gravity data at Prudhoe Bay: New understanding through integration with reservoir simulation models. Expanded Abstract, Society of Exploration Geophysicists Annual Meeting.CrossRefGoogle Scholar
Zumberge, M., Alnes, H., Eiken, O., Sasagawa, G., and Stenvold, T. (2008). Precision of seafloor gravity and pressure measurements for reservoir monitoring. Geophysics, 73(6): WA133WA141.CrossRefGoogle Scholar

References

Alnes, H., Eiken, O., Nooner, S., Sasagawa, G., Stenvold, T., and Zumberge, M. (2011). Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume. Energy Procedia, 4: 55045551.CrossRefGoogle Scholar
Arts, R., Chadwick, A., Eiken, O., Thibeau, S., and Nooner, S. (2008). Ten years’ experience of monitoring CO2 injection in the Utsira sand at Sleipner, offshore Norway. First Break, 26: 6572.CrossRefGoogle Scholar
Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67: 44274440.CrossRefGoogle Scholar
Bai, J., and Yingst, D. (2014). Simultaneous inversion of velocity and density in time-domain full waveform inversion. Expanded Abstracts, Society of Exploration Geophysicists Technical Program, 922927.CrossRefGoogle Scholar
Bhakta, T., and Landrø, M. (2014). Estimation of pressure-saturation changes for unconsolidated reservoir rocks with high Vp/Vs ratio. Geophysics, 79: M35M54.CrossRefGoogle Scholar
Boait, F. C., White, N. J., Bickle, M. J., Chadwick, R. A., Neufeld, J. A., and Huppert, H. E. (2012). Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea. Journal of Geophysical Research, 117: B03309.CrossRefGoogle Scholar
Buland, A., Landrø, M., Andersen, M., and Dahl, T. (1996). AVO inversion of Troll Field data. Geophysics, 61: 15891602.CrossRefGoogle Scholar
Cavanagh, A. J., and Haszeldine, R. S. (2014). The Sleipner storage site: Capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation. International Journal of Greenhouse Gas Control, 21: 101112.CrossRefGoogle Scholar
Evensen, A. K., and Landrø, M. (2010). Time-lapse tomographic inversion using a Gaussian parameterization of the velocity changes. Geophysics, 75: U29U38.CrossRefGoogle Scholar
Furre, A. K., and Eiken, O. (2014). Dual sensor streamer technology used in Sleipner CO2 injection monitoring. Geophysical Prospecting, 62: 10751088.CrossRefGoogle Scholar
Garcia Leiceaga, G., Silva, J., Artola, F., Marquez, E., and Vanzeler, J. (2010). Enhanced density estimation from prestack inversion of multicomponent seismic data. Leading Edge, 29: 12201226.CrossRefGoogle Scholar
Ghaderi, A., and Landrø, M. (2009). Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data. Geophysics, 74: O17O28.CrossRefGoogle Scholar
Grude, S., Landrø, M., and Osdal, B. (2013). Time-lapse pressure saturation discrimination for CO2 storage at the Snøhvit field. International Journal of Greenhouse Gas Control, 19: 369378.CrossRefGoogle Scholar
Helgesen, J., and Landrø, M. (1993). Estimation of elastic parameters from AVO effects in the tau-p domain. Geophysical Prospecting, 41: 341366.CrossRefGoogle Scholar
Keary, P., Brooks, M., and Hill, I. (2002). An introduction to geophysical exploration, 3rd edn. Oxford: Blackwell.Google Scholar
Kiær, A. F., Eiken, O., and Landrø, M. (2015). Calendar time interpolation of amplitude maps from 4D seismic data. Geophysical Prospecting, 64: 421430.CrossRefGoogle Scholar
Landrø, M. (1999). Discrimination between pressure and fluid saturation changes from time lapse seismic data. Expanded Abstracts, Society of Exploration Geophysicists Technical Program, 16511654.CrossRefGoogle Scholar
Landrø, M. (2001). Discrimination between pressure and fluid saturation changes from time lapse seismic data. Geophysics, 66: 836844.CrossRefGoogle Scholar
Lindeberg, E., and Bergmo, P. (2003). The long-term fate of CO2 injected into an aquifer. In Gale, J. and Kaya, Y. (eds.), Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, Japan, October 1–4, 2002. Oxford: Pergamon, 489494.CrossRefGoogle Scholar
Queißer, M., and Singh, S. C. (2013). Localizing CO2 at Sleipner: Seismic images versus P-wave velocities from waveform inversion. Geophysics, 78: B131B146.CrossRefGoogle Scholar
Rabben, T. E., and Ursin, B. (2011). AVA inversion of the top Utsira Sand reflection at the Sleipner field. Geophysics, 76: C53C63.CrossRefGoogle Scholar
Reid, F. J. L., Nguyen, P. H., MacBeth, C., Clark, R. A., and Magnus, I. (2001). Q estimates from North Sea VSPs. Expanded Abstracts, Society of Exploration Geophysicists Technical Program, 440443.CrossRefGoogle Scholar
Roy, B., Anno, P., and Gurch, M. (2006). Wide‐angle inversion for density: Tests for heavy‐oil reservoir characterization. Expanded Abstracts, Society of Exploration Geophysicists Technical Program, 16601664.CrossRefGoogle Scholar
Roy, B., Anno, P., and Gurch, M. (2008). Imaging oil-sand reservoir heterogeneities using wide-angle prestack seismic inversion. Leading Edge, 27: 11921201.CrossRefGoogle Scholar
Sasagawa, G., Crawford, W., Eiken, O., Nooner, S., Stenvold, T., and Zumberge, M. (2003). A new seafloor gravimeter. Geophysics, 68: 544553.CrossRefGoogle Scholar
Span, R., and Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25: 15091596.CrossRefGoogle Scholar
Stovas, A., Landrø, M., and Avseth, P. (2006). AVO attribute inversion for finely layered reservoirs. Geophysics, 71: C25C36.CrossRefGoogle Scholar
Trani, M., Arts, R., Leeuwenburgh, O., and Brouwer, J. (2011). Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis. Geophysics, 76: C1C17.CrossRefGoogle Scholar
Tura, A., and Lumley, D. E. (1999). Estimating pressure and saturation changes from time‐lapse AVO data. In 69th Annual International Meeting, The Society of Exploration Geophysicists. Expanded Abstracts, Society of Exploration Geophysicists Technical Program, 16551658.CrossRefGoogle Scholar
Zumberge, M., Alnes, H., Eiken, O., Sasagawa, G., and Stenvold, T. (2008). Precision of seafloor gravity and pressure measurements for reservoir monitoring. Geophysics, 73: WA133WA141.CrossRefGoogle Scholar

References

Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146: 5462.CrossRefGoogle Scholar
Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., et al. (2012). Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics, 77: B253B267.CrossRefGoogle Scholar
Bhuyian, A. H., Ghaderi, A., and Landro, M. (2011). CSEM sensitivity study of CO2 layers with uniform versus patchy saturation distributions. Expanded Abstracts, Society of Exploration Geohysicists Technical Program, 655659.Google Scholar
Birkholzer, J. T., Zhou, Q., and Tsang, C.-F. (2009). Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. International Journal of Greenhouse Gas Control, 3: 181194.CrossRefGoogle Scholar
Christensen, N. B., Sherlock, D., and Dodds, K. (2006). Monitoring CO2 injection with cross-hole electrical resistivity tomography. Exploration Geophysics, 37: 4449.CrossRefGoogle Scholar
Commer, M., Newman, G. A., Williams, K. H., and Hubbard, S. S. (2011). Three-dimensional induced polarization data inversion for complex resistivity. Geophysics, 76: F157F171.CrossRefGoogle Scholar
Commer, M., Doetsch, J., Dafflon, B., Wu, Y., Daley, T. M., and Hubbard, S. S. (2016). Time-lapse 3-D electrical resistance tomography inversion for crosswell monitoring of dissolved and supercritical CO2 flow at two field sites: Escatawpa and Cranfield, Mississippi, USA. International Journal of Greenhouse Gas Control, 49: 297311.CrossRefGoogle Scholar
Doetsch, J., Kowalsky, M. B., Doughty, C., et al. (2013). Constraining CO2 simulations by coupled modeling and inversion of electrical resistance and gas composition data. International Journal of Greenhouse Gas Control, 18: 510522.CrossRefGoogle Scholar
Eiken, O., Brevik, I., Arts, R., Lindeberg, E., and Fagervik, K. (2000). Seismic monitoring of CO2 injected into a marine aquifer. Expanded Abstracts, Society of Exploration Geophysicists Technical Program, 16231626.Google Scholar
Gasperikova, E., and Chen, J. (2009). A resolution study of non-seismic geophysical monitoring tools for monitoring of CO2 injection into coal beds. In Eide, L. I. (ed.), Carbon dioxide capture for storage in deep geologic formations. Results from the CO2 Capture Project, Vol. 3: Advances in CO2 capture and storage technology. Berkshire: CPL Press, 403420.Google Scholar
Gasperikova, E., and Hoversten, G. M. (2006). A feasibility study of nonseismic geophysical methods for monitoring geologic CO2 sequestration. Leading Edge, 25: 12821288.CrossRefGoogle Scholar
Gasperikova, E., and Morrison, H. F. (2019). Electrical and electromagnetic techniques for CO2 monitoring. In Huang, L. (ed.), Geophysical monitoring for geologic carbon sequestration. Hoboken, NJ: AGU Wiley.Google Scholar
Grayver, A. V., Streich, R., and Ritter, O. (2014). 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation. Geophysics, 79: E101E114.CrossRefGoogle Scholar
Gueguen, Y. (1994). Introduction to the physics of rocks. Princeton, NJ: Princeton University Press.Google Scholar
Hagrey, S. A. (2012). 2D optimized electrode arrays for borehole resistivity tomography and CO2 sequestration modelling. Pure and Applied Geophysics, 169: 12831292.CrossRefGoogle Scholar
Hoversten, G. M., Gritto, R., Washbourne, J., and Daley, T. (2003). Pressure and fluid saturation prediction in a multicomponent reservoir using combined seismic and electromagnetic imaging. Geophysics, 68: 15801591.CrossRefGoogle Scholar
Lu, J., Kharaka, Y. K., Thordsen, J. J., et al. (2012). CO2 rock-brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, U.S.A. Chemical Geology, 291: 269277.CrossRefGoogle Scholar
Morrison, H. F., and Gasperikova, E. The Berkeley course in applied geophysics (interactive textbook). http://appliedgeophysics.berkeley.eduGoogle Scholar
Nakatsuka, Y., Xue, Z., Garcia, H., and Matsuoka, T. (2010). Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. International Journal of Greenhouse Gas Control, 4: 209216.CrossRefGoogle Scholar
Oldenburg, D. W., and Li, Y. (2005). Inversion for applied geophysics: A tutorial. In Butler, D. K. (ed.), Investigations in geophysics, No. 13: Near-surface geophysics. Society for Exploration in Geophysics, 89150.CrossRefGoogle Scholar
Rucker, C., Gunther, T., and Spitzer, K. (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topography. I. Modelling. Geophysical Journal International, 166: 495505.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Bosing, D., et al. (2013). Electrical resistivity tomography (ERT) for monitoring of CO2 migration: From tool development to reservoir surveillance at the Ketzin pilot site. Energy Procedia, 37: 42684275.CrossRefGoogle Scholar
Streich, R. (2016). Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37: 4780.CrossRefGoogle Scholar
Telford, W. M., Geldart, L. P., and Sheriff, R. F. (1990). Applied geophysics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Tikhonov, A. V., and Arsenin, V. Y. (1977). Solution of ill-posed problems. Hoboken, NJ: John Wiley & Sons.Google Scholar
Zhou, B., and Greenhalgh, S. A. (2000). Cross-hole resistivity tomography using different electrode configurations. Geophysical Prospecting, 48: 887912.Google Scholar

References

Abercrombie, R. E. (1995). Earthquake source scaling relationships from –1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research, 100(B12): 24, 01524, 036.CrossRefGoogle Scholar
Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a – bM and its confidence limits. Bulletin of the Earthquake Research Institute, 43: 237239.Google Scholar
Albaric, J., Oye, V., and Kühn, D.. (2014). Microseismic monitoring in carbon capture and storage projects: Fourth EAGE CO2 geological storage workshop, Stavanger, Norway.CrossRefGoogle Scholar
Bauer, R. A., Carney, M., and Finley, R. J. (2016 ). Surface monitoring of microseismicity at the Decatur, Illinois, CO2 Sequestration Demonstration Site. International Journal of Greenhouse Gas Control, 54: 378388.CrossRefGoogle Scholar
Brune, J. (1970). Tectonic stress and the spectra of shear waves from earthquakes. Journal of Geophysical Research, 75: 49975009.CrossRefGoogle Scholar
Daley, T. M., Sharma, S., Dzunic, A., Urosevic, M., Kepic, A., and Sherlock, D. (2009). Borehole seismic monitoring at Otway using the Naylor-1 instrument String. LBNL-2337E report. Berkeley, CA: Lawrence Berkeley National Laboratory.CrossRefGoogle Scholar
Duncan, P., and Eisner, L. (2010). Reservoir characterization using surface microseismic monitoring. Geophysics, 75. DOI:10.1190/1.3467760.CrossRefGoogle Scholar
Hubbert, M. K., and Rubey, W. W. (1959). Role of fluid pressure in mechanics of overthrust faulting: 1. Mechanics of fluid-filled porous solids and its application to over-thrust faulting. Bulletin of the Geological Society of America, 70: 115166.CrossRefGoogle Scholar
Jost, M. L., and Hermann, R. B. (1989). A student’s guide to and review of moment tensors. Seismological Research Letters, 60: 3757.CrossRefGoogle Scholar
Kaven, O., Hickman, S. H., McGarr, A. F., and Ellsworth, W. L. (2015). Surface monitoring of microseismicity at the Decatur, Illinois, CO2 Sequestration Demonstration Site. Seismological Research Letters, 86. DOI:10.1785/0220150062.CrossRefGoogle Scholar
Lee, D.W., Mohamed, F., Will, R., Bauer, R., and Shelander, D. (2014). Integrating mechanical earth models, surface seismic, and microseismic field observations at the Illinois Basin – Decatur Project. Energy Procedia, 63: 33473356.CrossRefGoogle Scholar
Maxwell, S. C. (2014). Microseismic imaging of hydraulic fracturing: Improved engineering of unconventional shale reservoirs. SEG Distinguished Instructor Short Course. DOI:10.1190/1.9781560803164.CrossRefGoogle Scholar
Maxwell, S. C., and Reynolds, F. (2012). Guidelines for standard deliverables from microseismic monitoring of hydraulic fracturing. CSEG Recorder. https://csegrecorder.com/articles/view/guidelines-for-standard-deliverablesGoogle Scholar
Maxwell, S. C., Urbancic, T., and McClellan, P. (2003a). Assessing the feasibility of reservoir monitoring using induced seismicity. EAGE Abstracts.CrossRefGoogle Scholar
Maxwell, S. C., Urbancic, T. I., Prince, M., and Demerling, C. (2003b). Passive imaging of seismic deformation associated with steam injection in Western Canada. SPE 84572.CrossRefGoogle Scholar
Maxwell, S. C., White, D. J., and Fabriol, H. (2004). Passive seismic imaging of CO2 sequestration at Weyburn. Expanded Abstracts, Society of Exploration Geophysicists.Google Scholar
Maxwell, S. C., Du, J., and Shemeta, J. (2008). Passive seismic and surface monitoring of geomechanical deformation associated with steam injection. Leading Edge, 27: 260266.Google Scholar
Maxwell, S. C., Rutledge, J., Jones, R., and Fehler, M. (2010). Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 75. DOI:10.1190/1.3477966.CrossRefGoogle Scholar
Oye, V., Aker, E., Daley, T. M., Kuhn, D., Bohloli, B., and Korneev, V. (2013). Microseismic monitoring and interpretation of injection data from the In Salah CO2 storage site (Krechba), Algeria. Energy Procedia, 37: 41914198.CrossRefGoogle Scholar
Prinet, C., Thibeau, S., Lescanne, M., and Monne, J. (2013). Lacq-Rousse CO2 capture and storage demonstration pilot: Lessons learnt from two and a half years monitoring. Energy Procedia, 37: 36103620.CrossRefGoogle Scholar
Ramirez, A., and Foxall, W. (2014). Stochastic inversion of InSAR data to assess the probability of pressurepenetration into the lower caprock at In Salah. International Journal of Greenhouse Gas Control, 27: 4248.CrossRefGoogle Scholar
Segall, P., and Lu, S. (2015). Injection-induced seismicity:Poroelastic and earthquake nucleation effects. Journal of Geophysical Research: Solid Earth, 120: 50825103. DOI:10.1002/2015JB012060.CrossRefGoogle Scholar
Smith, V., and Jaques, P. (2016). Illinois Basin-Decatur Project pre-injection microseismic analysis. International Journal of Greenhouse Gas Control, 54: 362377.CrossRefGoogle Scholar
Soma, N., and Rutledge, J. T. (2013). Relocation of microseismicity using reflected waves from singlewell, three-component array observations: Application to CO2 injection at the Aneth oil field. International Journal of Greenhouse Gas Control, 19: 7491.CrossRefGoogle Scholar
Verdon, J. P., Kendall, J. M., and Maxwell, S. C. (2010). A comparison of passive seismic monitoring of fracture stimulation from water and CO2 injection. Geophysics, 75. DOI:abs/10.1190/1.3304825.Google Scholar
White, D. (2009). Monitoring CO2 storage during EOR at the Weyburn-Midale Field. Leading Edge, July: 838842.Google Scholar
Will, R., Smith, V., Leetaru, H. E., Freiburg, J. T., and Lee, D. W. (2014). Microseismic monitoring, event occurrence, and the relationship to subsurface geology. Energy Procedia, 63: 44244436.CrossRefGoogle Scholar
Zoback, M. D., and Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences of the USA. DOI:10.1073/pnas.1202473109.CrossRefGoogle Scholar

References

Archie, G. E. (1942). Electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146: 5461.CrossRefGoogle Scholar
Bassiouni, Z. (1994). Theory, measurement, and interpretation of well logs. SPE Textbook Series, 4. Richardson, TX: Society of Petroleum Engineers.CrossRefGoogle Scholar
Clavier, C., Hoyle, W. R., and Meunier, D. (1971). Quantitative interpretation of TDT Logs. Journal of Petroleum Technology, 23: 743763.Google Scholar
Dupree, J. H. (1989). Cased-hole nuclear logging interpretation, Prudhoe Bay, Alaska. Log Analyst, 162177.Google Scholar
Gilchrist, W. A. Jr., Roger, L. T., and Watson, J. T. (1983). Carbon/oxygen interpretation, a theoretical model. In SPWLA 24th Symposium, paper FF.Google Scholar
Gould, J., Wackler, J., Quiren, J., and Watson, J. (1991). CO2 monitor logging: East Mallet Unit, Slaughter Field, Hockley County, Texas. In SPWLA 32nd Annual Symposium, paper PP.Google Scholar
Harold, B. H., Benimeli, D., Leveques, C., Bebourg, I., and Cadenhead, J. (2004). Combinable through-tubing cased hole formation resistivity tool. SPE 90018.CrossRefGoogle Scholar
Jiang, L., Tokar, T., and Zyweck, M. (2009). Innovation to enhanced oil recovery from slim cased hole resistivity measurement in Gulf of Thailand. In SPWLA 50th Annual Symposium, paper YY.Google Scholar
McGhee, B. F., McGuire, J. A., and Vacca, H. I. (1974). Examples of dual spacing thermal neutron decay time login Texas coast oil & gas reservoirs. SPWLA 15th Annual Symposium, paper R.Google Scholar
Moore, J. S. (1986). Design, installation, and early operation of the Tambalier Bay Gravity–Stable Miscible CO2 Injection Project. SPE Production Engineering, 369–378, also SPE 14287.CrossRefGoogle Scholar
North, R. J. (1987). Through-casing reservoir evaluation using gamma ray spectroscopy. SPE 16356.CrossRefGoogle Scholar
Ruhovets, N., and Wyatt, D. F. (1995). Quantitative monitoring of gas flooding in oil-bearing reservoirs by use of a pulsed neutron tool. SPE 21411.Google Scholar
Sakurai, S., Ramakrishnan, T. S., Boyd, A., Mueller, N., and Hovorka, S. (2006). Monitoring saturation changes for CO2 CSS; petrophysical support of the Frio Brine pilot experiment. Petrophysics, 47(6): 483496.Google Scholar
Smolen, J. J. (1996). Cased hole and production log evaluation. Tulsa, OK: PennWell, 108.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×