Published online by Cambridge University Press: 05 June 2012
Uniquely Decipherable Codes
Let Σ = {0, 1, …, σ – 1}. We call Σ an alphabet and its elements are called letters; the number of letters in Σ is σ. (Except for this numerical use of σ, the “numerical” value of the letters is ignored; they are just “meaningless” characters. We use the numerals just because they are convenient characters.) A finite sequence a1a2…al, where ai is a letter, is called a word whose length is l. We denote the length of a word w by l(w). A set of (nonempty and distinct) words is called a code. For example, the code {102, 21,00} consists of three code-words: one code-word of length 3 and two code-words of length 2; the alphabet is {0, 1,2} and consists of three letters. Such an alphabet is called “ternary”.
Let c1,c2,…,ck be code-words. The message c1c2…ck is the word resulting from the concatenation of the code-word c1 with c2, and so on. For example, if c1 = 00, c2 = 21, and c3 = 00, then c1c2c3 = 002100.
A code C over Σ (i.e., the code-words of C consist of letters in Σ) is said to be uniquely decipherable (UD) if every message constructed from code-words of C can be broken down into code-words of C in only one way. For example, the code {01, 0,10} is not UD because the message 010 can be parsed in two ways: 0,10 and 01, 0.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.