Published online by Cambridge University Press: 05 June 2012
Bridges and Kuratowski's Theorem
Consider a graph drawn in the plane in such a way that each vertex is represented by a point; each edge is represented by a continuous line connecting the two points that represent its end vertices, and no two lines, which represent edges, share any points, except in their ends. Such a drawing is called a plane graph. If a graph G has a representation in the plane that is a plane graph then it is said to be planar.
In this chapter, we shall discuss some of the classical work concerning planar graphs. The question of efficiently testing whether a given finite graph is planar is discussed in the next chapter.
Let S be a set of vertices of a non-separable graph G(V,E). Consider the partition of the set V – S into classes, such that two vertices are in the same class if and only if there is a path connecting them that does not use any vertex of S. Each such class K defines a component as follows: The component is a subgraph H(V′,E′), where V′ ⊃ K. In addition, V′ includes all the vertices of S that are connected by an edge to a vertex of K, in G. Also, E′ contains all edges of G that have at least one end-vertex in K. An edge, where both u and ν are in S, defines a singular component ({u,ν}, {e}). Clearly, two components share no edges, and the only vertices they can share are elements of S.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.