Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-15T23:06:35.969Z Has data issue: false hasContentIssue false

2 - Multiphase Catalytic Processes and Sustainability Challenges

Published online by Cambridge University Press:  15 September 2022

Bala Subramaniam
Affiliation:
University of Kansas
Get access

Summary

Solvents play a vital role in chemical processes such as solubilizing reactants, facilitating product/catalyst separation, increasing reaction rates, enhancing solubilities of gaseous reactants (such as O2, CO, H2) and providing heat capacity to manage the heat of reaction. However, solvent use can also cause adverse environmental impacts by increasing the carbon footprint and/or emitting harmful vapors. This chapter highlights such roles of solvents in multiphase catalytic processes such as hydroformylation, carbonylation, hydrogenation and oxidation through industrial examples. It also discusses how the pressure-tunable properties of supercritical fluids (SCFs) and gas-expanded liquids (GXLs) can be harnessed to develop greener chemical technologies through efficient feedstock utilization, process intensification, enhanced process safety and reduced use of volatile organic solvents. Emerging feedstocks, such as plant-based biomass, shale gas and sequestered CO2 offer excellent opportunities for using such tunable solvents.

Type
Chapter
Information
Green Catalysis and Reaction Engineering
An Integrated Approach with Industrial Case Studies
, pp. 13 - 49
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dudukovic, M. P., Larachi, F. and Mills, P. L., Multiphase catalytic reactors: A perspective on current knowledge and future trends. Cat. Revs., 44 (2002), 123246.CrossRefGoogle Scholar
Chaudhari, R. V. and Mills, P. L., Multiphase catalysis and reaction engineering for emerging pharmaceutical processes. Chem. Eng. Sci., 59 (2004), 5337–44.CrossRefGoogle Scholar
Ranade, V. V., Chaudhari, R. V. and Gunjal, P. R., Trickle Bed Reactors: Reactor engineering and Applications, 1st ed. (Oxford: Elsevier, 2011).Google Scholar
Smith, J. M., Large multiphase reactors: Some open questions. Chem. Eng. Res. Des., 84 (2006), 265–71.Google Scholar
Suresh, A. K., Sharma, M. and Sridhar, T., Engineering aspects of industrial liquid phase air oxidation of hydrocarbons. Ind. Eng. Chem. Res., 39 (2000), 3958–97.Google Scholar
Chaudhari, R. V., Torres, A., Jin, X. and Subramaniam, B., Multiphase catalytic hydrogenolysis/deoxygenation processes for chemicals from renewable feedstocks: Kinetics, mechanism, and reaction engineering. Ind. Eng. Chem. Res., 52 (2013), 15226–43.CrossRefGoogle Scholar
Gradassi, M. J. and Green, N. W., Economics of natural gas conversion processes. Fuel Process. Technol., 42 (1995), 6583.Google Scholar
Wood, D. A., Nwaoha, C. and Towler, B. F., Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng., 9 (2012), 196208.Google Scholar
Sheldon, R. A., Critical review: Green solvents for sustainable organic synthesis: State of the art. Green Chem., 7 (2005), 267–78.Google Scholar
Jessop, P. G. and Subramaniam, B., Gas-expanded liquids. Chem. Revs., 107 (2007), 2666–94.Google Scholar
Kruse, A. and Vogel, H., Heterogeneous catalysis in supercritical media: 2. Near-critical and supercritical water. Chem. Eng. Tech., 31 (2008), 1241–45.Google Scholar
Seki, T., Grunwaldt, J. D. and Baiker, A., Heterogeneous catalytic hydrogenation in supercritical fluids: Potential and limitations. Ind. Eng. Chem. Res., 47 (2008), 4561–85.Google Scholar
Akien, G. R. and Poliakoff, M., A critical look at reactions in Class I and II gas-expanded liquids using CO2 and other gases. Green Chem., 11 (2009), 10831100.Google Scholar
Seki, T. and Baiker, A., Catalytic oxidations in dense carbon dioxide. Chem. Revs., 109 (2009), 2409–54.Google Scholar
Jutz, F., Andanson, J. M. and Baiker, A., Ionic liquids and dense carbon dioxide: A beneficial biphasic system for catalysis. Chem. Rev., 111 (2011), 322–53.Google Scholar
Medina-Gonzalez, Y., Camy, S. and Condoret, J.-S.. ScCO2/green solvents: Biphasic promising systems for cleaner chemicals manufacturing. ACS Sustain. Chem. Eng., 2 (2014), 2623–36.Google Scholar
Beller, M. and Bohm, C., Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, vols. 1 & 2. (Weinheim: Wiley-VCH, 2004).CrossRefGoogle Scholar
Cornils, B. and Hermann, W. A., Concepts in homogeneous catalysis: The industrial view. Appl. Cat. A: Gen., 216 (2003), 2331.Google Scholar
Weissermel, K. and Arpe, H.-J., Industrial Organic Chemistry, 4th ed. (Weinheim: Wiley-VCH, 2003).Google Scholar
Falbe, J. (ed.), New Synthesis with Carbon Monoxide (Berlin: Springer, 1980).Google Scholar
Chaudhari, R. V., Homogeneous catalytic carbonylation and hydroformylation for synthesis of industrial chemicals. Top. Catal., 55 (2012), 439–45.Google Scholar
Church, T. L., Getzler, Y. D. Y. L., Byrne, C. M. and Coates, G. W.. Carbonylation of heterocycles by homogeneous catalysts. Chem. Commun., 7 (2007), 657–74.Google Scholar
Haynes, A., Catalytic methanol carbonylation. Adv. Catal., 53 (2010), 145.Google Scholar
Hjortkjaer, J. and Jensen, O. R., Rhodium complex catalyzed methanol carbonylation: Effects of medium and various additives. Ind. Eng. Chem. Prod. Res. Develop., 16 (1977), 281–85.Google Scholar
Matsumoto, T., Mori, K., Mizoroki, T. and Ozaki, A., The effect of a solvent on carbonylation of methanol catalyzed by rhodium complexes in the presence of methyl iodide. Bull. Chem. Soc. Jpn., 50 (1977), 2337–40.Google Scholar
Pearson, J. M., Haynes, A., Morris, G. E., Sunley, G. J. and Maitlis, P. M., Dramatic acceleration of migratory insertion in (MeIr(CO)2I3)− by methanol and by tin (II) iodide. J. Chem. Soc., Chem. Commun., 10 (1995), 1045–46.Google Scholar
Jones, J. H., The CativaTM process for the manufacture plant of acetic acid. Platin. Met. Rev., 44 (2000), 94105.Google Scholar
Brégeault, J., Transition-metal complexes for liquid-phase catalytic oxidation: Some aspects of industrial reactions and of emerging technologies. Dalton Trans., 17 (2003), 3289–302.Google Scholar
Mills, P. L. and Chaudhari, R. V., Reaction engineering of emerging oxidation processes. Catal. Today, 48 (1999), 1729.CrossRefGoogle Scholar
Gemoets, H. P. L., Su, Y., Shang, M., Hessel, V., Luque, R. and Noël, T., Liquid phase oxidation chemistry in continuous-flow microreactors. Chem. Soc. Rev., 45 (2016), 83117.CrossRefGoogle ScholarPubMed
Partenheimer, W., Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catal. Today, 23 (1995), 69158.Google Scholar
Tomas, R. A. F., Bordado, J. C. M. and Gomes, J. F. P., p‑Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chem. Rev., 113 (2013), 7421–69.CrossRefGoogle ScholarPubMed
Li, M., Niu, F., Zuo, X., Metelski, P. D., Busch, D. H. and Subramaniam, B., A spray reactor concept for catalytic oxidation of p-Xylene to produce high-purity terephthalic acid. Chem. Eng. Sci., 104 (2013), 93102.Google Scholar
Lappin, G. R., Nemec, L. H., Sauer, J. D. and Wagner, J. D., Olefins, higher. In Kirk-Othmer Encyclopedia of Chemical Technology (New York: John Wiley, 2010), pp. 120.Google Scholar
Marinangeli, R. E. and Brandvold, T. A., Using Water Concentration to Control Ethylene Oligomerization. U.S. patent 5,744,699. 04-28-1998.Google Scholar
Elowe, P. R. and Bercaw, J. E., Solvent, Additive and Co-catalyst Effects for Ethylene Oligomerization Catalysis. U.S. patent application 2009/0118117A1. 05-07-2009.Google Scholar
Franke, R., Selent, D. and Borner, A., Applied hydroformylation. Chem. Rev., 112 (2012), 5675−732.Google Scholar
Torres, C. M., Frauenlob, R., Franke, R. and Börner, A., Production of alcohols vis hydroformylation. Cat. Sci. Tech., 5 (2015), 3454.Google Scholar
Hagemeyer, H. J. (to Eastman Kodak Co.), Processes for the Production of Oxygenated Compounds. U.S. patent 2,748,167. 05-27-1956.Google Scholar
Hagemeyer, H. J. and Hull, D. C. (to Eastman Kodak Co), Production of Normal Oxygenated Compounds. U.S. patent application 2,694,734. 04-22-1948.Google Scholar
Takegami, Y., Watanabe, Y., Masada, H. and Mitsudo, T., Studies of the organic reactions of metal carbonyls: Solvent effects on the hydroformylation of propylene and on the reaction of cobalt hydrocarbonyl with 1-pentene. Bull. Chem. Soc. Jpn., 42 (1969), 206–10.Google Scholar
Purwanto, P., Deshpande, R. M., Chaudhari, R. V. and Delmas, H., Solubility of hydrogen, carbon monoxide, and 1-octene in various solvents and solvent mixtures. J. Chem. Eng. Data, 41 (1996), 1414–17.Google Scholar
Kazuhisa, M. and Akio, M., Effect of solvents on the oxo reaction rate of propylene catalyzed by cobalt carbonyl (Co2(CO)8) in the presence of a small amount of pyridine. Nippon Kagaku Kaishi, 4 (1979), 555–57.Google Scholar
Gianfranco, P., Alberto, A., Guglielmo, G., Gianfranco, F., Giorgio, M. and Renato, U., Catalysis by phosphine cobalt carbonyl complexes. VI. Solvent effects in the hydroformylation of propene. Chimica e lndustria, 55 (1973), 203–7.Google Scholar
Rupilius, W. and Orchin, M., The isomerization and disproportionation of acylcobalt carbonyls. J. Org. Chem., 37 (1972), 936–39.CrossRefGoogle Scholar
Craddock, J. H., Hershamann, A., Paulik, F. E. and Roth, J. F., 1969. Hydroformylation catalysis with arylphosphine complexes with rhodium. Ind. Eng. Chem. Prod. Res. Develop., 8 (1969), 291–97.Google Scholar
Wiebus, E. and Cornils, B., Biphasic systems: Water-organic. In Catalyst Separation, Recovery and Recycling: Chemistry and Process Design, eds. Cole-Hamiltion, D. J. and Tooze, R.. Catalysis by Metal Complexes, vol. 30, (Dordrecht: Springer, 2006), pp. 105–43.Google Scholar
Cornils, B., Modern solvent systems in industrial homogeneous catalysis. Top. Curr. Chem., 206 (1999), 133–52.Google Scholar
Desset, S. L., Cole-Hamilton, D. J. and Foster, D. F., Aqueous biphasic hydroformylation of higher alkenes promoted by alkylimidazolium salts. Chem. Commun., 19 (2007), 1933–35.Google Scholar
Haumann, M., Koch, H. and Schomäcker, R.. Hydroformylation in microemulsions: Conversion of an internal long chain alkene into a linear aldehyde using a water soluble cobalt catalyst. Cat. Tod., 79 –80 (2003), 4349.Google Scholar
Müller, M., Kasaka, Y., Müller, D., Schomäcker, R. and Wozny, G., Process design for the separation of three liquid phases for a continuous hydroformylation process in a miniplant scale. Ind. Eng. Chem. Res., 52 (2013), 7259–64.Google Scholar
Nowothnick, H., Rost, A., Hamerla, T., Schomäcker, R., Müller, C. and Vogt, D., Comparison of phase transfer agents in the aqueous biphasic hydroformylation of higher alkenes. Cat. Sci. Tech., 3 (2013), 600–5.Google Scholar
Lee, J. K., Yoon, T. J. and Chung, Y. K., Novel smart ligand for immobilizing a highly efficient Rh-catalyst. Chem. Commun., 13 (2001), 1164–65.Google Scholar
Behr, A., Henze, G. and Schomäcker, R., Thermoregulated liquid/liquid catalyst separation and recycling. Adv. Syn. Cat., 348 (2006), 1485–95.CrossRefGoogle Scholar
Behr, A., Brunsch, Y. and Lux, A., Rhodium nanoparticles as catalysts in the hydroformylation of 1-dodecene and their recycling in thermomorphic solvent systems. Tetrahedron Lett., 53 (2012), 2680–83.Google Scholar
Brunsch, Y. and Behr, A., Temperature‐controlled catalyst recycling in homogeneous transition‐metal catalysis: Minimization of catalyst leaching. Angew. Chem. Int. Ed. Engl., 52 (2013), 1586–89.Google Scholar
Markert, J., Brunsch, Y., Munkelt, T., Kiedorf, G., Behr, A., Hamel, C. and Seidel-Morgenstern, A., Analysis of the reaction network for the Rh-catalyzed hydroformylation of 1-dodecene in a thermomorphic multicomponent solvent system. Appl. Cat. A: Gen., 462 –463 (2013), 287–95.Google Scholar
Schäfer, E., Brunsch, Y., Sadowski, G. and Behr, A., Hydroformylation of 1-dodecene in the thermomorphic solvent system dimethylformamide/decane. Phase behavior–reaction performance–catalyst recycling. Ind. Eng. Chem. Res., 51 (2012), 1029610306.Google Scholar
Dwars, T., Paetzold, E. and Oehme, G., Reactions in micellar systems. Angew. Chem. Int. Ed. Engl., 44 (2005), 7174–99.Google Scholar
Fu, H., Li, M., Chen, H. and Li, X., Higher olefin hydroformylation in organic/aqueous biphasic system accelerated by double long-chain cationic surfactants. J. Mol. Catal-A. Chem., 259 (2006), 156–60.Google Scholar
Deshpande, R. M., Kelkar, A. A., Sharma, A., Julcour-Lebigue, C. and Delmas, H., Kinetics of hydroformylation of 1-octene in ionic liquid–organic biphasic media using rhodium sulfoxantphos catalyst. Chem. Eng. Sci., 66 (2011), 1631–39.CrossRefGoogle Scholar
Desset, S. L., Hintermair, U., Gong, Z. X., Santini, C. C. and Cole-Hamilton, D. J., Biphasic and flow systems involving water or supercritical fluids. Top. Catal. 53 (2010), 963–68.Google Scholar
Koeken, A. C. J., de Bakker, S. J. M., Costerus, H. M., van den Broeke, L. J. P., Deelman, B. J. and Keurentjes, J. T. F., Evaluation of pressure and correlation to reaction rates during homogeneously catalyzed hydroformylation in supercritical carbon dioxide. J. Supercrit. Fluid., 46 (2008), 4756.Google Scholar
Cavani, F. and Teles, J. H., Sustainability in catalytic oxidation: An alternative approach or a structural evolution. ChemSusChem, 2 (2009), 508–34.Google ScholarPubMed
Russo, V., Tesser, R., Santacesaria, E. and Di Serio, M., Chemical and technical aspects of propene oxide production via hydrogen peroxide (HPPO process). Ind. Eng. Chem. Res., 52 (2013), 1168–78.Google Scholar
Liu, X. W., Wang, X. S., Guo, X. W. and Li, G., Effect of solvent on the propylene epoxidation over TS-1 catalyst. Cat. Tod., 93 –95 (2004), 505–9.Google Scholar
van der Wall, J. C. and van Bekkum, H., Zeolite titanium beta: A versatile epoxidation catalyst. Solvent effects. J. Mol. Catal–A Chem., 124 (1997), 137–46.Google Scholar
Wu, Y., Liu, Q., Su, X. and Mi, Z., Effect of solvents on propylene epoxidation over TS-1 catalyst. Frontiers of Chemistry in China, 3 (2008), 112–17.Google Scholar
Miyano, Y. and Fukuchi, K., Henry’s constants of propane, propene, trans-2-butene and 1,3-butadiene in methanol at 255–320 K. Fluid Ph. Equilibria, 226 (2004), 183–87.Google Scholar
Augustine, R. L., Heterogeneous Catalysis for the Synthetic Chemist, 1st ed. (New York: Marcel Dekker, 1996).Google Scholar
Singh, U. K. and Vannice, M. A., Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts: A review. Appl. Catal. A: Gen., 213 (2001), 124.Google Scholar
Fajt, V., Ladislav, K. and Libor, Č., The effect of solvents on the rate of catalytic hydrogenation of 6‐ethyl‐1,2,3,4‐tetrahydroanthracene‐9,10‐dione. Int. J. Chem. Kinet., 40 (2008), 240–52.Google Scholar
Li, W., Xie, J. H., Lin, H. and Zhou, Q. L.. Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes. Green Chem., 14 (2012), 2388–90.Google Scholar
Wan, H., Vitter, A., Chaudhari, R. V. and Subramaniam, B., Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model bio-oil substrates. J. Catal., 309 (2014), 174–84.Google Scholar
Mitrofanov, I., Sansonetti, S., Abildskov, J., Sin, G. and Gani, R., The solvent selection framework: Solvents for organic synthesis, separation processes and ionic-liquids synthesis. In Proceedings of the 22nd European Symposium on Computer Aided Process Engineering, Computer Aided Chemical Engineering, Vol. 30, eds. Bogle, I. D. L. and Fairweather, M. (London: Elsevier, 2012), pp. 762–66.Google Scholar
Subramaniam, B., Exploiting neoteric solvents for sustainable catalysis and reaction engineering: Opportunities and challenges. Ind. Eng. Chem. Res., 49 (2010), 10218–29.Google Scholar
Lopez-Castillo, Z. K., Aki, S. N. V. K., Stadtherr, M. A. and Brennecke, J. F., Enhanced solubility of oxygen and carbon monoxide in CO2-expanded liquids. Ind. Eng. Chem. Res., 45 (2006), 5351–60.Google Scholar
Lopez-Castillo, Z. K., Aki, S. N. V. K., Stadtherr, M. A. and Brennecke, J. F., Enhanced solubility of hydrogen in CO2-expanded liquids. Ind. Eng. Chem. Res., 47 (2008), 570–76.Google Scholar
Anastas, P. T. and Warner, J. C., Green Chemistry: Theory and Practice (New York: Oxford University Press, 1998).Google Scholar
Anastas, P. T. and Eghbali, N., Green chemistry: Principles and practice. Chem. Soc. Rev., 39 (2010), 301–12.Google Scholar
Leitner, W., Supercritical carbon dioxide as a green reaction medium for catalysis. Acc. Chem. Res., 35 (2002), 746–56.CrossRefGoogle Scholar
Clark, J. H., Hunt, A., Topi, C., Paggiola, G. and Sherwood, J., Sustainable Solvents: Perspectives from Research, Business and International Policy (Cambridge: Royal Society of Chemistry2017).Google Scholar
Jérôme, F. and Luque, R., Bio-Based Solvents (Wiley, 2017).Google Scholar
Doraiswamy, L. K. and Sharma, M. M., Heterogeneous Reactions, Vol. 2 (New York: Wiley, 1984).Google Scholar
Moran, S. and Henkel, K. D., Reactor types and their industrial applications. In Ullman’s Encyclopedia of Industrial Chemistry (Germany: Wiley-VCH, 2016), pp. 149.Google Scholar
Mills, P. L. and Chaudhari, R. V., Multiphase catalytic reactor engineering and design for pharmaceuticals and fine chemicals. Catalysis Today 37 (1997), 367404.CrossRefGoogle Scholar
Peschel, A., Hentschel, B., Freund, H. and Sundmacher, K., Design of optimal multiphase reactors exemplified on the hydroformylation of long chain alkenes. Chem. Eng. J., 188 (2012), 126–41.Google Scholar
Wiese, K. D., Möller, O., Protzmann, G. and Trocha, M., A new reactor design for catalytic fluid–fluid multiphase reactions. Cat. Tod., 79 (2003), 97103.Google Scholar
McHugh, M. A. and Krukonis, V. J., Supercritical Fluid Extraction: Principles and Practice, 2nd ed. (Stoneham, MA: Butterworth-Heinemann, 1994).Google Scholar
Subramaniam, B., Lyon, C. J. and Arunajatesan, V., Environmentally benign multiphase catalysis with dense phase carbon dioxide. Appl. Catal. B: Environ., 37 (2002), 279–92.Google Scholar
Jessop, P. G., Homogeneous catalysis using supercritical fluids: Recent trends and systems studied. J. Supercrit. Fluid., 38 (2006), 211–31.Google Scholar
Subramaniam, B., Sustainable processes with aupercritical fluids. In Encyclopedia of Sustainable Technologies, Vol. 3., ed. Abraham, M. A. (Amsterdam: Elsevier, 2017), pp. 653–62.Google Scholar
Hunt, A. and Attard, T. M. (eds.), Supercritical and Other High-Pressure Solvent Systems: For Extraction, Reaction and Material Processing (Cambridge: Royal Society of Chemistry, 2018).CrossRefGoogle Scholar
Arunajatesan, V., Wilson, K. A. and Subramaniam, B.. Pressure-tuning the effective diffusivity of near-critical reaction mixtures in mesoporous catalysts. Ind. Eng. Chem. Res., 42 (2003), 2639–43.Google Scholar
Seki, T. and Baiker, A., Catalytic oxidations in dense carbon dioxide. Chem. Rev., 109 (2009), 2409–54.Google Scholar
Bermejo, M. D. and Cocero, M. J., Supercritical water oxidation: A technical review. AIChE J., 52 (2006), 3933–51.Google Scholar
Brunner, G., Near and supercritical water. Part II: Oxidative processes. J. Supercrit. Fluid., 47 (2009), 382–90.Google Scholar
Savage, P. E., A perspective on catalysis in sub- and supercritical water. J. Supercrit. Fluid., 47 (2009), 407–14.Google Scholar
Schmieder, H. and Abeln, J., Supercritical water oxidation: State of the art. Chem. Eng. Techol., 22 (1999), 903–8.Google Scholar
Kruse, A. and Vogel, H., Heterogeneous catalysis in supercritical media: 2. Near-critical and supercritical water. Chem. Eng. Technol., 31 (2008), 1241–45.Google Scholar
Peréz, E., Fraga-Dubreuil, J., García-Verdugo, E., Hamley, P. A., Thomas, W. B., Housley, D., Partenheimer, W. and Poliakoff, M., Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 1. Comparison with ortho-xylene and the role of the catalyst. Green Chem., 13 (2011), 2389–96.Google Scholar
Peréz, E., Fraga-Dubreuil, J., García-Verdugo, E., Hamley, P. A., Thomas, M. L., Yan, C., Thomas, W. B., Housley, D., Partenheimer, W. and Poliakoff, M., Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 2. The discovery of better catalysts. Green Chem., 13 (2011), 2397–407.Google Scholar
Dunn, J. B. and Savage, P. E., Economic and environmental assessment of high-temperature water as a medium for terephthalic acid synthesis. Green Chem., 5 (2003), 649–55.Google Scholar
Dunn, J. B. and Savage, P. E., High-temperature liquid water: A viable medium for terephthalic acid synthesis. Env. Sci. Tech., 39 (2005), 5427–35.Google Scholar
Osada, M. and Savage, P. E., Terephthalic acid synthesis at higher concentrations in high-temperature liquid water. 1. Effect of oxygen feed method. AIChE J., 55 (2009), 710–16.Google Scholar
Osada, M. and Savage, P. E., Terephthalic acid synthesis at higher concentrations in high-temperature liquid water. 2. Eliminating undesired byproducts. AIChE J., 55 (2009), 1530–37.Google Scholar
Bektesevic, S., Kleman, A. M., Marteel-Parrish, A. E. and Abraham, M. A., Hydroformylation in supercritical carbon dioxide: Catalysis and benign solvents. J. Supercrit, Fluid., 38 (2006), 232–41.Google Scholar
Koeken, A. C. J., Benes, N. E., van den Broeke, L. J. P. and Keurentjes, J. T. F., Efficient hydroformylation in dense carbon dioxide using phosphorus ligands without perfluoroalkyl substituents. Adv. Synth. Catal., 351 (2009), 1442–50.Google Scholar
Ono, Y., Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl. Catal. A: Gen., 155 (1997), 133–66.Google Scholar
Kizlink, J. and Pastucha, I., Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn(IV) and Ti(IV) alkoxides and metal acetates. Collect. Czech. Chem. Commun., 60 (1995), 687–92.Google Scholar
Ballivet-Tkatchenko, D., Ligabue, R. A. and Plasseraud, L., Synthesis of dimethyl carbonate in supercritical carbon dioxide. Braz. J. Chem. Eng., 23 (2006), 111–16.Google Scholar
Wells, P. S., Zhou, S. and Parcher, J. F., Unified chromatography with CO2-based binary mobile phases. Anal. Chem., 75 (2003), 18A24A.Google Scholar
Weitkamp, J. and Traa, Y., Isobutane/butene alkylation on solid catalysts. Where do we stand? Cat. Tod., 49 (1999), 193–99.CrossRefGoogle Scholar
Funamoto, G., Tamura, S., Segawa, K., Wan, K. T. and Davis, M. E., Isobutane alkylation over solid acid catalysts under supercritical conditions. Res. Chem. Intermediat., 24 (1998), 449–59.Google Scholar
Fan, L., Nakamura, I., Ishida, S. and Fujimoto, K., Supercritical-phase alkylation reaction on solid acid catalysts: Mechanistic study and catalyst development. Ind. Eng. Chem. Res., 36 (1997), 1458–63.Google Scholar
Clark, M. C. and Subramaniam, B., Extended alkylate production activity during fixed-bed supercritical 1-butene/isobutane alkylation on solid acid catalysts using carbon dioxide as a diluent. Ind. Eng. Chem. Res., 37 (1998), 1243–50.Google Scholar
Lyon, C. J., Subramaniam, B. and Pereira, C. J.. Enhanced isooctane yields for 1-butene/isobutane alkylation on SiO2-supported Nafion® in supercritical carbon dioxide. In Studies in Surface Science and Catalysis, Vol. 139, eds., Spivey, J. J., Roberts, G. W. and Davis, B. H. (Amsterdam: Elsevier, 2001), pp. 221–28.Google Scholar
Gooden, P. N., Bourne, R. A., Parrott, A. J., Bevinakatti, H. S., Irvine, D. J. and Poliakoff, M., Continuous acid-catalyzed methylations in supercritical carbon dioxide: Comparison of methanol, dimethyl ether and dimethyl carbonate as methylating agents. Org. Process Res. Develop., 14 (2010), 411–16.Google Scholar
Yokota, K. and Fujimoto, K., Supercritical phase Fischer-Trøpsch synthesis reaction. Fuel, 68 (1989), 255–56.Google Scholar
Bukur, D. B., Lang, X., Akgerman, A. and Feng, Z., Effect of process conditions on olefin selectivity during conventional and supercritical Fischer-Trøpsch synthesis. Ind. Eng. Chem. Res., 36 (1997), 2580–87.Google Scholar
Bochniak, D. J. and Subramaniam, B., Fischer-Trøpsch synthesis in near-critical n-hexane: Pressure tuning effects. AIChE J., 44 (1998), 1889–96.Google Scholar
Elbashir, N. O. and Roberts, C. B., Enhanced incorporation of α-olefins in the Fischer-Trøpsch synthesis chain-growth process over an alumina-supported cobalt catalyst in near-critical and supercritical hexane media. Ind. Eng. Chem. Res., 44 (2005), 505–21.Google Scholar
Elbashir, N. O., Bukur, D. B., Durham, E. and Roberts, C. B., Advancement of Fischer-Trøpsch synthesis via utilization of supercritical fluid reaction media. AIChE J., 56 (2010), 9971015.Google Scholar
Durham, E., Stewart, S., Roe, D., Xu, R., Zhang, S. and Roberts, C. B., Supercritical Fischer-Trøpsch synthesis: heavy aldehyde production and the role of process conditions. Ind. Eng. Chem. Res., 53 (2014), 9695–702.Google Scholar
Fischer, A., Mallat, T. and Baiker, A., Continuous amination of propanediols in supercritical ammonia. Angew. Chem. Int. Ed. Engl., 38 (1999), 351–54.Google Scholar
Seki, T., Grunwaldt, J. D. and Baiker, A., Heterogeneous catalytic hydrogenation in supercritical fluids: Potential and limitations. Ind. Eng. Chem. Res., 47 (2008), 4561–85.Google Scholar
Härröd, M. and Møller, P., Hydrogenation of fats and oils at supercritical conditions. In High Pressure Chemical Engineering, eds. von Rohr, P. R. and Trepp, C. (Amsterdam: Elsevier, 1996), pp. 4348.Google Scholar
Hitzler, M. G., Smail, F. R., Ross, S. K. and Poliakoff, M., Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process. Org. Proc. Res. Dev., 2 (1998), 137–46.Google Scholar
Arunajatesan, V., Subramaniam, B., Hutchenson, K. W. and Herkes, F. E., Fixed-bed hydrogenation of organic compounds in supercritical carbon dioxide. Chem. Eng. Sci., 56 (2001), 1363–69.Google Scholar
Minder, B., Mallat, T., Pickel, K. H., Steiner, K. and Baiker, A., Enantioselective hydrogenation of ethyl pyruvate in supercritical fluids. Cat. Lett., 34 (1995), 19.Google Scholar
King, J. W. and List, G. R., Hydrogenation using critical fluids. In Hydrogenation of Fats and Oils: Theory and Practice, ed. List, G. R. and King, J. W. (Elsevier: AOCS Press, 2011), pp. 49109.Google Scholar
van den Hark, S. and Härröd, M., Hydrogenation of oleochemicals at supercritical single-phase conditions: influence of hydrogen and substrate concentrations on the process. Appl. Cat. A: Gen., 210 (2001), 207–15.Google Scholar
van den Hark, S. and Härröd, M., Fixed-bed hydrogenation at supercritical conditions to form fatty alcohols: The dramatic effects caused by phase transitions in the reactor. Ind. Eng. Chem. Res., 40 (2001), 5052–57.Google Scholar
King, J. W., Holliday, R. L., List, G. R. and Snyder, J. M., Hydrogenation of vegetable oils using mixtures of supercritical carbon dioxide and hydrogen. J. Am. Oil Chem. Soc, 78 (2001), 107–13.Google Scholar
Stephenson, P., Kondor, B., Licence, P., Scovell, K., Ross, S. K. and Poliakoff, M., Continuous asymmetric hydrogenation in supercritical carbon dioxide using an immobilized homogeneous catalyst, Adv. Synth. Catal., 348 (2006), 1605–10.Google Scholar
Jansen, M. and Rehren, C. (Roche Vitamins Inc.), Catalytic Hydrogenation using Amorphous Metal Alloy and a Solvent under Near-critical or Super-critical Conditions. U.S. patent 6,002,047. 12-14-1999.Google Scholar
Hong, S. T., Park, H. S., Lim, J. S., Lee, Y-W., Anpo, M. and Kim, J. D., Synthesis of dimethyl carbonate from methanol and supercritical carbon dioxide. Res. Chem. Intermed., 32 (2006), 737–47.Google Scholar
Tamboli, A. H., Chaugule, A. A. and Kim, H., Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem. Eng. J., 323 (2017), 530–44.Google Scholar
Bansode, A. and Urakawa, A., Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catal., 4 (2014), 3877–80.Google Scholar
Deshpande, S. R., Sunol, A. K. and Philippidis, G., Status and prospects of supercritical alcohol transesterification for biodiesel production. WIREs Energy. Environ., 6 (2017), 115.Google Scholar
Zeng, D., Li, R., Yan, T. and Fang, T., Perspectives and advances of microalgal biodiesel production with supercritical fluid technology. RSC Adv., 4 (2014), 39771–81.Google Scholar
Gutiérrez Ortiz, F. J., Techno-economic assessment of supercritical processes for biofuel production. J. Supercrit. Fluid., 160 (2020), 104788.Google Scholar
Kruse, A., Supercritical water gasification. Biofuel. Bioprod. Bior., 2 (2008), 415–37.Google Scholar
Gassner, M.Vogel, F.Heyen, G. and Marechal, F., Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: Process optimisation for selected substrates. Energy Environ. Sci., 4 (2011), 1742–58.Google Scholar
Vogel, F., Catalytic Conversion of high-moisture biomass to synthetic natural gas in supercritical water. In Handbook of Green Chemistry, Heterogenous Catalysis, vol. 2, ed. Crabtree, R. H. (Weinheim, Wiley-VCH, 2009), pp. 281324.Google Scholar
Brandenberger, M.Matzenberger, J.Vogel, F. and Ludwig, C., Producing synthetic natural gas from microalgae via supercritical water gasification: A techno-economic sensitivity analysis. Biomass Bioenerg., 51 (2013), 2634.Google Scholar
Orfield, N. D., Fang, A. J., Valdez, P. J., Nelson, M. C., Savage, P. E., Lin, X. N. and Keoleian, G. A., Life cycle design of an algal biorefinery featuring hydrothermal liquefaction: Effect of reaction conditions and an alternative pathway including microbial regrowth, ACS Sustain. Chem. & Eng., 2 (2014), 867–74.Google Scholar
Kumar, M.Olajire Oyedun, A. and Kumar, A., A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sust. Energy Rev., 81 (2018), 1742–70.Google Scholar
Han, X. and Poliakoff, M., Continuous reactions in supercritical carbon dioxide: Problems, solutions and possible ways forward. Chem. Soc. Rev., 41 (2012), 1428–36.Google Scholar
Leitner, W. and Jessop, P. G. (eds.), Green Solvents: Supercritical Solvents (Weinhem: Wiley-VCH, 2010).Google Scholar
Ren, W., Rutz, B. and Scurto, A. M., High-pressure phase equilibrium for the hydroformylation of 1-octene to nonanal in compressed CO2. J. Supercrit. Fluid., 51 (2009), 142–47.Google Scholar
Xie, Z., Snavely, W. K., Scurto, A. M. and Subramaniam, B., Solubilities of CO and H2 in neat and CO2-expanded hydroformylation reaction mixtures containing 1-octene and nonanal up to 353.15 K and 9 MPa. J. Chem. Eng. Data, 54 (2009), 1633–42.Google Scholar
da Ponte, M. N., Phase equilibrium-controlled chemical reaction kinetics in high pressure carbon dioxide. J. Supercrit. Fluid., 47 (2009), 344–50.Google Scholar
Hutchenson, K. W., Scurto, A. M. and Subramaniam, B. (eds.), Gas-Expanded Liquids and Near-Critical Media, Green Chemistry and Engineering (Washington, DC: American Chemical Society, 2009).Google Scholar
Subramaniam, B., Gas-expanded liquids for sustainable catalysis and novel materials: Recent advances. Coord. Chem. Rev., 254 (2010), 1843–53.Google Scholar
Calvignac, B., Elisabeth, R., Jean-Jacques, L. and Jacques, F., Development of characterization techniques of thermodynamic and physical properties applied to the CO2-DMSO mixture. Int. J. Chem. React. Eng., 7 (2009), doi:10.2202/1542-6580.2095.Google Scholar
Li, H. L., Wilhelmsen, O., Lv, Y. X., Wang, W. L. and Yan, J. Y., Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: Review of experimental data and theoretical models. Int. J. Greenh. Gas Con., 5 (2011), 1119–39.Google Scholar
Sato, Y., Yoshioka, H., Aikawa, S. and Smith, R. L., A digital variable-angle rolling-ball viscometer for measurement of viscosity, density, and bubble-point pressure of CO2 and organic liquid mixtures. Int. J. Thermophys., 31 (2010), 18961903.Google Scholar
Bikkina, P. K., Shoham, O. and Uppaluri, R., Equilibrated interfacial tension data of the CO2–water system at high pressures and moderate temperature. J. Chem. Eng. Data, 56 (2011), 3725–33.Google Scholar
Fu, D., Investigation of the interfacial properties for CO2-methanol and CO2-ethanol mixtures. Sci. China Chem., 54 (2011), 856–62.Google Scholar
Georgiadis, A., Llovell, F., Bismarck, A., Blas, F. J., Galindo, A., Maitland, G. C., Trusler, J. P. M. and Jackson, G., Interfacial tension measurements and modelling of (carbon dioxide plus n-alkane) and (carbon dioxide plus water) binary mixtures at elevated pressures and temperatures. J. Supercrit. Fluid., 55 (2010), 743–54.CrossRefGoogle Scholar
Georgiadis, A., Maitland, G., Trusler, J. P. M. and Bismarck, A., Interfacial tension measurements of the (H2O + CO2) system at elevated pressures and temperatures. J. Chem. Eng. Data, 55 (2010), 4168–75.Google Scholar
Li, H., Yang, D. and Tontiwachwuthikul, P., Experimental and theoretical determination of equilibrium interfacial tension for the solvent(s)-CO2-heavy oil systems. Energy Fuels, 26 (2012), 1776–86.Google Scholar
Espinoza, D. N. and Santamarina, J. C., Water–CO2-mineral systems: Interfacial tension, contact angle, and diffusion: Implications to CO2 geological storage. Water Resource Res., 46 (2010), doi:10.1029/2009WR008634.Google Scholar
Zeigermann, P. and Valiullin, R., Transport properties of gas-expanded liquids in bulk and under confinement. J. Supercrit. Fluid., 75 (2013), 4347.Google Scholar
Abbott, A. P., Hope, E. G., Mistry, R. and Stuart, A. M., Probing the structure of gas expanded liquids using relative permittivity, density and polarity measurements. Green Chem., 11 (2009), 1530–35.CrossRefGoogle Scholar
Eltringham, W., Relative permittivity measurements of carbon dioxide + ethanol mixtures. J. Chem. Eng. Data, 56 (2011), 3363–66.Google Scholar
Palafox-Hernandez, J. P., Mendis, C. H., Thompson, W. H. and Laird, B. B., Pressure and temperature tuning of gas-expanded liquid structure and dynamics, J. Phys. Chem. B., 123 (2019), 2915–24.Google Scholar
Ye, K., Freund, H., Xie, Z., Subramaniam, B. and Sundmacher, K., Prediction of multicomponent phase behavior of CO2-expanded liquids using CEoS/GE models and comparison with experimental data. J. Supercrit. Fluid., 67 (2012), 4152.Google Scholar
Subramaniam, B. and Akien, G. R., Sustainable catalytic reaction engineering with gas-expanded liquids. Curr. Opin. Chem. Eng., 1 (2012), 336–41.Google Scholar
Piqueras, C. M., Damiani, D. E. and Bottini, S. B.. Effect of phase behavior in the hydrogenation of triglycerides under supercritical and near-critical propane. J. Supercrit. Fluid., 50 (2009), 128–37.Google Scholar
Zevnik, L. and Levec, J.. Hydrogen solubility in CO2-expanded 2-propanol and in propane-expanded 2-propanol determined by an acoustic sensor. J. Supercrit. Fluid., 41 (2007), 335–42.Google Scholar
Lee, H.-J., Shi, T.-P., Busch, D. H. and Subramaniam, B., A greener, pressure intensified propylene epoxidation process with facile product separation. Chem. Eng. Sci., 62, 7282–89.Google Scholar
Lee, H.-J., Ghanta, M., Busch, D. H. and Subramaniam, B., Towards a CO2-free ethylene oxide process: Homogeneous ethylene epoxidation in gas-expanded liquids,. Chem. Eng. Sci., 65 (2010), 128–34.Google Scholar
Liu, D., Chaudhari, R. V. and Subramaniam, B., Homogeneous catalytic hydroformylation of propylene in propane-expanded solvent media. Chem. Eng. Sci., 187 (2018), 148–56.Google Scholar
Liu, D., Xie, Z., Snavely, W. K., Chaudhari, R. V. and Subramaniam, B., Enhanced hydroformylation of 1-octene in n-butane expanded solvents with Co-based complexes. React. Chem. Eng., 3 (2018), 344–52.Google Scholar
del Moral, D., Osuna, A. M. B., Cordoba, A., Moreto, J. M., Veciana, J., Ricart, S. and Ventosa, N., Versatile chemoselectivity in Ni-catalyzed multiple bond carbonylations and cyclocarbonylations in CO2-expanded liquids. Chem. Commun., 31 (2009), 4723–25.Google Scholar
Della Ca, N., Bottarelli, P., Dibenedetto, A., Aresta, M., Gabriele, B., Salerno, G. and Costa, M., Palladium-catalyzed synthesis of symmetrical urea derivatives by oxidative carbonylation of primary amines in carbon dioxide medium. J. Catal., 282 (2011), 120–27.Google Scholar
Zuo, X., Niu, F., Snavely, W. K., Subramaniam, B. and Busch, D. H., Liquid phase oxidation of p-xylene to terephthalic acid at medium-high temperatures: Multiple benefits of CO2-expanded liquids. Green Chem., 12 (2010), 260–67.Google Scholar
Criegee, R., Mechanism of ozonolysis. Agnew. Chem. Int. Ed., 14 (1975), 745–52.Google Scholar
Lundin, M. D., Danby, A. M., Akien, G. R., Binder, T. J., Busch, D. H. and Subramaniam, B., Liquid CO2 as a safer and benign solvent for the ozonolysis of fatty acid methyl esters. ACS Sustain. Chem. Eng., 3 (2015), 3307–14.Google Scholar
Goebel, C. G., Brown, A. C., Oehlschlaegar, H. F. and Rolfes, R. P., Method of Making Azelaic Acid. U. S. patent 2,813,113. 1957-11-12.Google Scholar
Patnaik, P., A Comprehensive Guide to the Hazardous Properties of Chemical Substances (Hoboken, NJ: John Wiley, 2007).Google Scholar
Ershov, B. G. and Panich, N. M., Spectrophotometric determination of ozone in solutions: Molar absorption coefficient in the visible region. Spectrochim. Acta A Mol. Biomol. Spectrosc., 217 (2019), 3943.Google Scholar
Lundin, M. D., Danby, A. M., Akien, G. R., Venkatsubramanian, P., Martin, K. J., Busch, D. H. and Subramaniam, B., Intensified and safe ozonolysis of fatty acid methyl esters in liquid CO2 in a continuous reactor. AIChE J., 63 (2017), 2819–26.Google Scholar
Adipic Acid (ADPA): 2018 World Market Outlook and Forecast up to 2027, Merchant Research and Consulting, Birmingham, UK, 2018. Available at: https://mcgroup.co.uk/researches/adipic-acid-adpa, last accessed July 22, 2020.Google Scholar
Castellan, A., Bart, J. C. J. and Cavallaro, S., Industrial production and use of adipic acid. Catal. Today, 9 (1991), 237–54.Google Scholar
Barletta, B., Bolzacchini, E., Fossati, L., Meinardi, S., Orlandi, M. and Rindone, B., Metal-free functionalization of the unactivated carbon-hydrogen bond: The oxidation of cycloalkanes to cycloalkanones with ozone. Ozone Sci. Eng., 20 (1998), 9198.Google Scholar
Hwang, K. C. and Sagadevan, A., One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. Science, 346 (2014), 1495–98.Google Scholar
Rindone, B., Saliu, F. and Bertoa, R. S., Functionalization of the unactivated carbon-hydrogen bond via ozonation. Ozone Sci. Eng., 30 (2008), 165–71.Google Scholar
Avzyanova, E. V., Timerghazin, Q. K., Khalizov, A. F., Khursan, S. L., Spirikhin, L. V. and Shereshovets, V. V., Formation of hydrotrioxides during ozonation of hydrocarbons on silica gel. Decomposition of hydrotrioxides. J. Phys. Org. Chem., 13 (2000), 8789.Google Scholar
Rakovsky, S., Anachkov, M., Georgiev, V., Berlin, A., Belitski, M., and Zaikov, G., Ozonation of hydrocarbons. In Research Progress in Chemical Physics and Biochemical Physics, Pure and Applied Science, eds. Zaikov, G. E., Berlin, A. A., Majewski, K. and Pimerzin, A. A. (New York: Nova Science Publishers, 2014), pp. 166.Google Scholar
Chen, X., Rice, D. B., Danby, A. M., Lundin, M. D., Jackson, T. A. and Subramaniam, B., Experimental and computational investigations of C-H activation of cyclohexane by ozone in liquid CO2. React. Chem. Eng., 5 (2020), 793804.Google Scholar
Kunene, T. E., Webb, P. B. and Cole-Hamilton, D.-J., Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chem., 13 (2011), 1476–81.Google Scholar
Hintermair, U., Gong, Z. X., Serbanovic, A., Muldoon, M. J., Santini, C. C. and Cole-Hamilton, D.-J., Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier. Dalton Trans., 39 (2010), 8501–10.Google Scholar
Hintermair, U., Hofener, T., Pullmann, T., Francio, G. and Leitner, W., Continuous enantioselective hydrogenation with a molecular catalyst in supported ionic liquid phase under supercritical CO2 flow. ChemCatChem, 2 (2010), 150–54.Google Scholar
Koch, T. J., Desset, S. L. and Leitner, W., Catalytic supercritical fluid extraction: Selective hydroformylation of olefin mixtures using scCO2 solubility for differentiation. Green Chem., 12 (2010), 1719–21.Google Scholar
Xie, Z., Fang, J., Maiti, S. K., Snavely, W. K., Tunge, J. A. and Subramaniam, B., Enhanced hydroformylation by carbon dioxide-expanded media with soluble Rh complexes in nanofiltration membrane reactors. AIChE J., 59 (2013), 4287–96.Google Scholar
Licence, P., Ke, J., Sokolova, M., Ross, S. K. and Poliakoff, M., Chemical reactions in supercritical carbon dioxide: From laboratory to commercial plant. Green Chem., 5 (2003), 99104.Google Scholar
Stevens, J. G., Gomez, P., Bourne, R. A., Drage, T. C., George, M. W. and Poliakoff, M., Could the energy cost of using supercritical fluids be mitigated by using CO2 from carbon capture and storage (CCS)? Green Chem., 13 (2011), 2727–33.Google Scholar
Anikeev, V. I., Yermakova, A., Bogel-Łukasik, E. and da Ponte, M. N., Kinetics of limonene hydrogenation in high-pressure CO2 at variation of hydrogen pressure. Ind. Eng. Chem. Res., 49 (2010), 2084–90.Google Scholar
Bogel-Łukasik, E., Bogel-Łukasik, R. and da Ponte, M. N., Effect of flow rate of a biphasic reaction mixture on limonene hydrogenation in high pressure CO2. Ind. Eng. Chem. Res., 48 (2009), 7060–64.Google Scholar
Bogel-Łukasik, E., Bogel-Łukasik, R. and da Ponte, M. N., Pt- and Pd-catalysed limonene hydrogenation in high-density carbon dioxide. Monatsh. Chem., 140 (2009), 1361–69.Google Scholar
Bogel-Łukasik, E., Szudarska, A., Bogel-Łukasik, R. and da Ponte, M. N., Vapour–liquid equilibrium for β-myrcene and carbon dioxide and/or hydrogen and the volume expansion of β-myrcene or limonene in CO2 at 323.15 K. Fluid Ph. Equilibria, 282 (2009), 2530.Google Scholar
Bogel-Łukasik, E., da Silva, M. G., Nogueira, I. D., Bogel-Łukasik, R. and da Ponte, M. N., Study on selectivity of β-myrcene hydrogenation in high-pressure carbon dioxide catalysed by noble metal catalysts. Green Chem., 11 (2009), 1847–56.Google Scholar
Bogel-Łukasik, E., Wind, J., Bogel-Łukasik, R. and da Ponte, M. N., The influence of hydrogen pressure on the heterogeneous hydrogenation of beta-myrcene in a CO2-expanded liquid. J. Supercrit. Fluid., 54 (2010), 4652.Google Scholar
Melo, C. I., Bogel-Łukasik, R., da Silva, M. G. and Bogel-Łukasik, E., Advantageous heterogeneously catalysed hydrogenation of carvone with supercritical carbon dioxide. Green Chem., 13 (2011), 2825–28.Google Scholar
Wang, Q., Cheng, H. Y., Liu, R. X., Hao, J. M., Yu, Y. C. and Zhao, F. Y., Influence of metal particle size on the hydrogenation of maleic anhydride over Pd/C catalysts in scCO2. Catal. Tod., 148 (2009), 368–72.Google Scholar
Bhargava, S. S., Proietto, F., Azmoodeh, D., Cofell, E. R., Henckel, D. A., Verma, S., Brooks, C. J., Gewirth, A. A. and Kenis, P., System design rules for intensifying the electrochemical reduction of CO2 to CO on Ag nanoparticles. ChemElectroChem, 7 (2020), 2001–11.Google Scholar
Shaughnessy, C. I., Sconyers, D. J., Kerr, T., Lee, H.-J., Subramaniam, B., Leonard, K. C. and Blakemore, J. D., Enhanced electrocatalytic CO2 conversion in pressure-tunable CO2-expanded electrolytes. ChemSusChem, 12 (2019), 3761–68.Google Scholar
Shaughnessy, C. I., Sconyers, D. J., Lee, H.-J., Subramaniam, B., Blakemore, J. D. and Leonard, K. C., Insights into pressure-tunable reaction rates for electrochemical reduction of CO2 in organic electrolytes. Green Chem., 22 (2020), 2434–42.Google Scholar
Sconyers, D. J., Shaughnessy, C. I., Lee, H.-J., Subramaniam, B., Blakemore, J. D. and Leonard, K. C., Enhancing molecular electrocatalysis of CO2 Reduction with pressure-tunable CO2-expanded electrolytes, ChemSusChem, 12 (2020) 2004–13.Google Scholar
Bravo-Suárez, J. J., Chaudhari, R. V. and Subramaniam, B., Design of heterogeneous catalysts for fuels and chemical processing: An overview. In Novel Materials for Catalysis and Fuel Processing, eds. Bravo-Suárez, J. J., Kidder, M. K. and Schwartz, V. (Washington, DC: American Chemical Society, 2013), pp. 368.Google Scholar
Serrano-Ruiz, J. C., West, R. M. and Dumesic, J. A., Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng., 1 (2010), 79100.Google Scholar
Mettler, M. S., Vlachos, D. G. and Dauenhauer, P. J., Top ten fundamental challenges of biomass pyrolysis for biofuels. Energ. Env. Sci., 5 (2012), 77977809.Google Scholar
Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. and Barta, K., Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev., 118 (2018), 614–78.Google Scholar
Biddy, J., Scarlata, C. and Kinchin, C., Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential, National Renewable Energy Laboratory Technical Report NREL/TP-5100-65509, March 2016.Google Scholar
Shanks, B. H. and Keeling, P. L., Bioprivileged molecules: Creating value from biomass. Green Chem., 19 (2017), 3177–85.Google Scholar
Liao, Y., Koelewijn, S.-F., Van den Bossche, G., Van Aelst, J., Van den Bosch, S., Renders, T., Navare, K., Nicolai, T., Van Aelst, K., Maesen, M., Matsushima, H., Thevelein, J. M., Van Acker, K., Lagrain, B., Verboekend, D. and Sels, B. F., A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 367 (2020), 1385–90.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×