from Part II - Physical communications techniques for green radio networks
Published online by Cambridge University Press: 05 August 2012
Introduction
The past decade has witnessed many significant advances in the physical layer of wireless communication systems in both theory and implementation. Traditionally, the design of existing cellular networks has focused on increasing the spectral efficiency, throughput, and transmission reliability, while minimizing the latency. The recent research focus has also included studying the energy efficiency in next generation wireless networks; associated with this shift is a new point of view that wireless communications are becoming ubiquitous and that the energy consumption of embedded devices is gradually increasing. Of interest is the next generation of mobile technologies, where the energy resources are scarce and have to be conserved, in particular when the replenishment of the energy resource is not easy. On the other hand, in indoor or short-range communications such as pico-cellular networks and femtocells, or in dense wireless networks when a large number of mobile nodes is deployed over a region, the circuit energy-consumption is comparable to or even dominates the transmission energy due to the short distance between nodes. Thus, minimizing the total energy-consumption in both circuits and signal transmission compared to the current level should be considered primarily as an important requirement in the different layer design of future wireless networks. These requirements and realizations have led to a push towards green wireless communications and have created inter-disciplinary research challenges in hardware and protocols in different layers of the wireless network.
Towards green communication radios, the standardization processes for future wireless systems should target power control on circuit components as well as powermanagement algorithms for mobile nodes with sleep-mode processes, where the nodes only transmit a finite number of packets in a duty-cycling fashion.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.