Published online by Cambridge University Press: 12 November 2009
Let G be a finite group and H be a subgroup of G. Then a representation of the group G automatically describes a representation of the subgroup H of G. Such a representation is called a representation of H subduced by a representation of G. Conversely, from a given representation of a subgroup H of G we can form a representation of the group G. Such a representation is called a representation of G induced by a representation of its subgroup H. The problem is to form the irreducible representations (irreps in short) of G from the irreps of its subgroup H. If the group G is finite and solvable (see Section 8.4.1), the problem of forming the irreps of G may be solved by a step-by-step procedure from the trivial irrep of the trivial identity subgroup. This method is possible, for example, for a crystallographic point group. An alternative approach is via the induced irreps of G from the so-called small representations of the little groups of the irreps of H. As a preparation, we shall discuss subduced representations first.
Subduced representations
Let G = {g} be a group and H = {h} be a subgroup of G. Let Γ(G) = {Γ(g); g ∈ G} be a representation of G, then it provides a representation of H by {Γ(h); h ∈ H}. This representation is called the subduced representation of Γ(G) onto H or the representation of H subduced by the representation Γ(G).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.