Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-17T03:33:19.060Z Has data issue: false hasContentIssue false

6 - Off-lattice models

Published online by Cambridge University Press:  24 November 2021

David Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

The examination of the equation of state of a two-dimensional model fluid (the hard disk system) was the very first application of the importance sampling Monte Carlo method in statistical mechanics (Metropolis et al., 1953), and since then the study of both atomic and molecular fluids by Monte Carlo simulation has been a very active area of research. Remember that statistical mechanics can deal well analytically with very dilute fluids (ideal gases), and it can also deal well with crystalline solids (making use of the harmonic approximation and perfect crystal lattice periodicity and symmetry), but the treatment of strongly correlated dense fluids (and their solid counterparts, amorphous glasses) is much more difficult. Even the description of short range order in fluids in a thermodynamic state far away from any phase transition is a non-trivial matter (unlike the lattice models discussed in Chapter 5, where far away from phase transitions the molecular field approximation, or a variant thereof, is usually both good enough and easily worked out, and the real interest is generally in phase transition problems).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alder, B. J. and Wainwright, T. E. (1962), Phys. Rev. 127, 359.CrossRefGoogle Scholar
Allen, M. P. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Società Italiana di Fisica, Bologna), p. 255.Google Scholar
Allen, M. P., and Tildesley, D. J. (2017), Computer Simulation of Liquids, 2nd ed. (Oxford University Press, Oxford).CrossRefGoogle Scholar
Arnold, A., Fahrenberger, F., Holm, C., Lenz, O., Bolten, M., Dachsel, H., Halver, R., Kabadshow, I., Gähler, F., Heber, F., Iseringhausen, J., Hofmann, M., Pippig, M., Potts, D., and Sutmann, G. (2013), Phys. Rev. E 88, 063308.Google Scholar
Asakura, S. and Oosawa, F. (1954), J. Chem. Phys. 12, 1255.CrossRefGoogle Scholar
Ashton, D. J. and Wilding, N. B. (2011), Mol. Phys. 109, 999.Google Scholar
Baschnagel, J., Qin, K., Paul, W., and Binder, K. (1992), Macromolecules 25, 3117.Google Scholar
Baumgärtner, A. (1984), Ann. Rev. Phys. Chem. 35, 419.CrossRefGoogle Scholar
Baumgärtner, A. and Binder, K. (1981), J. Chem. Phys. 75, 2994.Google Scholar
Bernard, E. P. and Krauth, W. (2011), Phys. Rev. Lett. 107, 155704.Google Scholar
Bernard, E. P. and Krauth, W. (2012), Phys. Rev. E 86, 017701.Google Scholar
Bernard, E. P., Krauth, W., and Wilson, D. B. (2009), Phys. Rev. E 80, 056704.Google Scholar
Binder, K. (1982), Phys. Rev. A 25, 1699.CrossRefGoogle Scholar
Binder, K. (1994), Adv. Polymer Sci. 112, 181.Google Scholar
Binder, K. (ed.) (1995), Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York).Google Scholar
Binder, K. and Landau, D. P. (1989), in Advances in Chemical Physics: Molecule-Surface Interaction, ed. Lawley, K. P. (Wiley, New York), p. 91.Google Scholar
Binder, K., Block, B., Das, S. K., Virnau, P., and Winter, D. (2011), J. Stat. Phys. 144, 690.Google Scholar
Bolhuis, P. and Frenkel, D. (1997), J. Chem. Phys. 106, 666.Google Scholar
Bortz, A. B., Kalos, M. H., and Lebowitz, J. L. (1975), J. Comput. Phys. 17, 10.Google Scholar
Brannigan, G. and Brown, F. A. (2009). in Coarse-Graining of Condensed Phase and Biomolecular Systems, ed. Voth, G. A. (CRC Press, Boca Raton), p. 41.Google Scholar
Broughton, J. Q. and Gilmer, G. H. (1986), J. Chem. Phys. 84, 5759.CrossRefGoogle Scholar
Bruce, A. D., Jackson, A. N., Ackland, G. J., and Wilding, N. B. (2000), Phys. Rev. E 61, 906.Google Scholar
Bruce, A. D., Wilding, N. B., and Ackland, G. J. (1997), Phys. Rev. Lett. 79, 3002.Google Scholar
Caillot, J. M. (1992), J. Chem. Phys. 96, 1455.Google Scholar
Catlow, C. R. A. (ed.) (1992), Modelling of Structure and Reactivity in Zeolites (Academic Press, London).Google Scholar
Ceperley, D., Chester, C. V., and Kalos, M. H. (1977), Phys. Rev. B 16, 3081.Google Scholar
Consta, S., Wilding, N. B., Frenkel, D., and Alexandrowicz, Z. (1999), J. Chem. Phys. 110, 3220.Google Scholar
D’Adamo, G. and Pelissetto, A. (2017), J. Phys.: Condens. Mat. 29, 435104.Google Scholar
Dadobaev, G. and Slutsker, A. I. (1981), Sov. Phys. Solid State 23, 1131.Google Scholar
Dai, L., van der Marel, J. and Doyle, P. S. (2014a), Macromolecules 47, 2445.CrossRefGoogle Scholar
Dai, L., Renner, C. B., and Doyle, P. S. (2014b), Macromolecules 47, 6135.Google Scholar
Das, S. K. and Binder, K. (2011), Molec. Phys. 109, 1043.Google Scholar
Das, S. K., Egorov, S. A., Virnau, P., Winter, D. and Binder, K. (2018), J. Phys.: Condens. Mat. 30, 255001.Google Scholar
Davidchack, R. L. and Laird, B. B. (2000), Phys. Rev. Lett. 85, 4751.CrossRefGoogle Scholar
Davies, G. T., Eby, K., and Colson, J. P. (1970), J. Appl. Phys. 41, 4316.Google Scholar
De Gennes, P. G. (1979), Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca).Google Scholar
De Gennes, P. G. and Prost, J. (1993), The Physics of Liquid Crystals (Clarendon Press, Oxford).CrossRefGoogle Scholar
De Miguel, E. and Jackson, G. (2006), Molec. Phys. 104, 3717.Google Scholar
Deb, D., Wilms, D., Winkler, A., Virnau, P., and Binder, K. (2012), Int. J. Mod. Phys. C 23, 1240011.Google Scholar
Degiorgio, V. and Corti, M. (eds.) (1985), Physics of Amphiphiles: Micelles, Vesicles and Microemulsions (North-Holland, Amsterdam).Google Scholar
Deserno, M. and Holm, C. (1998), J. Chem. Phys. 109, 7694.Google Scholar
Desgranges, C. and Delhommelle, J. (2012), J. Chem. Phys. 136, 184102.Google Scholar
Desgranges, C. and Delhommelle, J. (2016), J. Chem. Phys. 145, 204112.Google Scholar
Domanski, J., Stansfeld, P. J., Sansom, M. S. P., and Beckstein, O. (2010), J. Membrane Biol. 236, 255.Google Scholar
Dress, C. and Krauth, W. (1995), J. Phys. A 28, L597.Google Scholar
Dünweg, B., Stevens, M., and Kremer, K. (1995), in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. Binder, K. (Oxford University Press, New York), p. 125.CrossRefGoogle Scholar
Eastwood, J. W., and Hockney, R. W. (1974), J. Comp. Phys. 16, 342.Google Scholar
Egorov, S. A., Milchev, A., Virnau, P., and Binder, K. (2016), Soft Matter 12, 4944.Google Scholar
Eisenriegler, E., Kremer, K., and Binder, K. (1982), J. Chem. Phys. 77, 6296.Google Scholar
Ermak, D. L. (1975), J. Chem. Phys. 62, 4189.CrossRefGoogle Scholar
Errington, J. R. (2003), Phys. Rev. E 67, 012102.Google Scholar
Errington, J. R. (2004), J. Chem. Phys. 120, 3130.Google Scholar
Fasnacht, M., Swendsen, R. H., and Rosenberg, J. M. (2004), Phys. Rev. E69, 056704.Google Scholar
Fischermeier, E., Bartuschat, D., Preclik, T., Marechal, M., and Mecke, K. (2014), Comput. Phys. Commun. 185, 3156.CrossRefGoogle Scholar
Frenkel, D. and Smit, B. (2001), Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (Academic Press, New York).Google Scholar
Gaines, G. L. Jr. (1996), Insoluble Monolayers at Liquid-Gas Interfaces (Intersciences, New York).Google Scholar
Gay, J. G. and Berne, B. J. (1981), J. Chem. Phys. 74, 3316.CrossRefGoogle Scholar
Greengard, L. and Rokhlin, V. (1987), J. Comp. Phys. 73, 325.Google Scholar
Grescheck, M., and Schoen, M. (2011), Phys. Rev. E 83, 011704.Google Scholar
Grzelak, E. M. and Errington, J. R. (2010), J. Chem. Phys. 132, 224702.CrossRefGoogle Scholar
Guira, M. and Schoen, M. (2014), Phys. Rev. E 90, 022507.Google Scholar
Haas, F. M., Hilfer, R., and Binder, K. (1996), J. Phys. Chem. 100, 15290.Google Scholar
Halperin, B. I. and Nelson, D. R. (1978), Phys. Rev. Lett. 41, 121.Google Scholar
Harland, J., Michel, M., Kampmann, T. A., and Kierfeld, J. (2017), EPL 117, 30001.Google Scholar
Houlrik, J., Landau, D. P., and Knak Jensen, S. (1994), Phys. Rev. E 50, 2007.Google Scholar
Humpert, A., and Allen, M. R. (2015), Molec. Phys. 113, 2680.Google Scholar
Jackson, A. N., Bruce, A. D., and Ackland, G. J. (2002), Phys. Rev. E 65, 036710.Google Scholar
Jaster, A. (1998), Europhys. Lett. 42, 277.CrossRefGoogle Scholar
Kampmann, T. A., Boltz, H.-H., and Kierfeld, J. (2015), J. Chem. Phys. 143, 044105Google Scholar
Kapfer, S. C. and Krauth, W. (2016), Phys. Rev. E 94, 031302 (R).Google Scholar
Karaborni, S. and O’Connell, J. P. (1990), J. Phys. Chem. 94, 2624.CrossRefGoogle Scholar
Kim, Y. C, Fisher, M. E., and Luijten, E. (2003), Phys. Rev. Lett. 91, 065701.Google Scholar
Klushin, L. I., Polotskii, A. A., Hsu, H.-P., Markelov, D. A., Binder, K., and Skvortsov, M. A. (2013), Phys. Rev. E 87, 022604.Google Scholar
Kofke, D. A. and Cummings, P. T. (1997), Molecular Phys. 92, 973.Google Scholar
Kosterlitz, J. M. and Thouless, D. J. (1973), J. Phys. C 6, 1181.Google Scholar
Kotelyanskii, M. and Theodorou, D. N. (eds) (2004), Simulation Methods for Polymers (M. Dekker, New York).Google Scholar
Kremer, K. (2006), in Computer Simulations Condensed Matter: From Materials to Chemical Biology, Vol 2, eds. Ferrario, M., Ciccotti, G., and Binder, K., eds), p. 341.Google Scholar
Kremer, K. and Binder, K. (1988), Computer Phys. Rep. 7, 259.CrossRefGoogle Scholar
Kremer, K. and Grest, G. S. (1990), J. Chem. Phys. 92, 5057.Google Scholar
Kremer, K. and Grest, G. S. (1995), in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. Binder, K. (Oxford University Press, New York), p. 194.CrossRefGoogle Scholar
Laird, B. B., Davidchack, R. L., Yang, Y., and Asta, M. (2009), J. Chem. Phys. 131, 114110.Google Scholar
Landau, D. P. (1991), in Phase Transitions and Surface Films, Vol 2, eds. Taub, H., Torzo, G., Lauter, H. J., and Fain, S. C., Jr. (Springer, New York), p. 11.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1980), Statistical Physics, 3rd edn, Part 1 (Pergamon Press, Oxford).Google Scholar
Liu, J. and Luijten, E. (2004), Phys. Rev. Lett. 92, 035504.Google Scholar
Lodge, T. P., Rotstein, N. A., and Prager, S. (1990), in Advances in Chemical Physics, Vol. 79, eds. Prigogine, I. and Rice, S. A. (Wiley, New York), p. 1.Google Scholar
Martonak, R., Paul, W., and Binder, K. (1996), Computer Phys. Commun. 99, 2.Google Scholar
Martonak, R., Paul, W., and Binder, K. (1997), J. Chem. Phys. 106, 8918.Google Scholar
Mavrantzas, V. G. (2005), in Handbook of Materials Modelling, Vol. I: Methods and Models, ed. Yip, S. (Springer, Berlin), p. 2583.Google Scholar
McDonald, I. R. (1972), Mol. Phys. 23, 41.Google Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953), J. Chem. Phys. 21, 1087.Google Scholar
Michel, M., Kapfer, S. C., and Krauth, W. (2014), J. Chem. Phys. 140, 054116.Google Scholar
Milchev, A. and Binder, K. (1996), Macromolecules 29, 343.Google Scholar
Milchev, A. and Binder, K. (1997), J. Chem. Phys. 106, 1978.Google Scholar
Milchev, A. and Binder, K. (2001), J. Chem. Phys. 115, 983.Google Scholar
Milchev, A., Dimitrov, D. I., and Binder, K. (2008), Polymer 49, 3611.Google Scholar
Milchev, A., Paul, W., and Binder, K. (1993), J. Chem. Phys. 99, 4786.Google Scholar
Mon, K. K. and Griffiths, R. B. (1985), Phys. Rev. A31, 956.Google Scholar
Mooij, G. C. A. M., Frenkel, D., and Smit, B. (1992), J. Phys. Condens. Matter 4, L255.Google Scholar
Moucka, F., and Nezbeda, I. (2009), Molecular Simul. 35, 660.Google Scholar
Moucka, F. and Nezbeda, I. (2010), Molecular Simul. 36, 526.Google Scholar
Müller, M. and Binder, K. (1995), Macromolecules 28, 1825.Google Scholar
Müller, M. and de Pablo, J. J. (2006), in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, eds. Ferrario, M., Ciccotti, G., and Binder, K. (Springer, Heidelberg), vol. 1, p. 67.Google Scholar
Nelson, D. R. and Halperin, B. I. (1979), Phys. Rev. B 19, 2457.CrossRefGoogle Scholar
Nijmeijer, M. J. P. and Weis, J. J. (1995), Phys. Rev. Lett. 75, 2887.Google Scholar
Nijmeijer, M. J. P., Bruin, C., Bakker, A. F., and van Leeuwen, M. J. M. (1990), Phys. Rev. A 42, 6052.Google Scholar
Norman, G. E. and Filinov, V. S. (1969), High Temp. (USSR) 7, 216.Google Scholar
Onsager, L. (1949), Ann, N. Y. Acad. Sci. 51, 627.Google Scholar
Owicki, J. C. and Scheraga, H. A. (1977), Chem. Phys. Lett. 47, 600.Google Scholar
Panagiotopoulos, A. Z. (1987), Mol. Phys. 61, 813.Google Scholar
Panagiotopoulos, A. Z. (1995), in Observation Prediction and Simulation of Phase Transitions in Complex Fluids, eds. Baus, M., Rull, L. F., and Ryckaert, J. P. (Kluwer Academic Publishers, Dordrecht), p. 463.Google Scholar
Pandey, R. B., Milchev, A., and Binder, K. (1997), Macromolecules 30, 1194.Google Scholar
Pangali, C., Rao, M., and Berne, B. J. (1978), Chem. Phys. Lett. 55, 413.Google Scholar
Pasini, P., Zannoni, C., and Zumer, S. (eds) (2004), Computer Simulations of Liquid Crystals and Polymers (Kluwer, Dordrecht).Google Scholar
Patrykiejew, A., Sokolowski, S., and Binder, K. (2000), Surface Sci. Rep. 37, 207.Google Scholar
Paul, W., Binder, K., Heermann, D. W., and Kremer, K. (1991), J. Phys. II (France) 1, 37.Google Scholar
Paul, W., Yoon, D. Y., and Smith, G. D. (1995), J. Chem. Phys. 103, 1702.CrossRefGoogle Scholar
Pearson, D. S., Verstrate, G., von Meerwall, E., and Schilling, F. C. (1987), Macromolecules 20, 1133.CrossRefGoogle Scholar
Pluhackeva, K., and Boeckmann, R. A. (2015), J. Phys.: Condens. Matter 27, 323103.Google Scholar
Pollock, E. L. and Glosli, J. (1996), Comput. Phys. Commun. 95, 93.Google Scholar
Presber, M., Dünweg, B., and Landau, D. P. (1998), Phys. Rev. E 58, 2616.Google Scholar
Privman, V. (1988), Phys. Rev. Lett. 61, 183.CrossRefGoogle Scholar
Rao, M. and Berne, B. J. (1979), Mol. Phys. 37, 455.Google Scholar
Rector, D. R., van Swol, F., and Henderson, J. R. (1994), Molecular Physics 82, 1009.CrossRefGoogle Scholar
Rosenbluth, M. N. and Rosenbluth, A. W. (1955), J. Chem. Phys. 23, 356.CrossRefGoogle Scholar
Rossky, P. J., Doll, J. D., and Friedman, H. L. (1978), J. Chem. Phys. 69, 4628.Google Scholar
Rouse, P. E. (1953), J. Chem. Phys. 21, 127.Google Scholar
Rovere, M., Heermann, D. W., and Binder, K. (1990), J. Phys. Cond. Matter 2, 7009.Google Scholar
Roy, S., Dietrich, S., and Höfling, F. (2016), J. Chem. Phys. 145, 134505.Google Scholar
Rull, L. F., Romero-Enrique, J. M., and Fernandez-Nieves, A. (2012), J. Chem. Phys. 137, 034505.Google Scholar
Ryckaert, J. P. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Società Italiana di Fisica, Bologna), p. 725.Google Scholar
Sariban, A. and Binder, K. (1987), J. Chem. Phys. 86, 5859.Google Scholar
Scheringer, M., Hilfer, R., and Binder, K. (1992), J. Chem. Phys. 96, 2296.Google Scholar
Schierz, P., Zierenberg, J., and Janke, W. (2016), Phys. Rev. E 94, 021301R.Google Scholar
Schilling, T. and Schmid, F. (2009), J. Chem. Phys. 131, 231102.Google Scholar
Schmid, F., Stadler, C., and Lange, H. (1998), in Computer Simulation Studies in Condensed-Matter Physics X, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Berlin), p. 37.Google Scholar
Sega, M. and Dellago, C. (2017), J. Phys. Chem. B 121, 3798.Google Scholar
Sentker, K., Zantop, A. W., Lippmann, M., Hofmann, T., Seeck, O. H., Kityk, A. V., Yildirim, A., Schönhals, A., Mazza, M. G., and Huber, P. (2018), Phys. Rev. Lett. 120, 067801.Google Scholar
Shvab, I. and Sadus, R. J. (2016), Fluid Phase Equilibria 407, 7.Google Scholar
Siepmann, J. I. and Frenkel, D. (1992), Mol. Phys. 75, 90.Google Scholar
Smit, B. (1988), Phys. Rev. A 37, 3481.Google Scholar
Smit, B. (1995), J. Phys. Chem. 99, 5597.Google Scholar
Smit, B., Esselink, K., Hilbers, P. A. J., van Os, N. M., Rupert, L. A. M., and Szleifer, I. (1993), Langmuir 9, 9.Google Scholar
Sokal, A. D. (1995), in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. Binder, K. (Oxford University Press, New York), p. 47.Google Scholar
Statt, A., Howard, M. P., and Panagiotopoulos, A. Z., (2018), J. Chem. Phys. 147, 184901.Google Scholar
Statt, A., Virnau, P., and Binder, K. (2015a), Phys. Rev. Lett. 114, 026106.Google Scholar
Statt, A., Virnau, P., and Binder, K. (2015b), Mol. Phys. 113, 2556.CrossRefGoogle Scholar
Stevens, M. (2009) in Coarse-Graining of Condensed Phase and Biomolecular Systems, ed. Voth, G. A. (CRC Press, Boca Raton), p. 343.Google Scholar
Tan, S. (J.), Prasetyo, L., Zeng, Y., Do, D. D., and Nicholson, D. (2017), Chem. Eng. J. 316, 243.Google Scholar
Theodorou, D. N. (2002), in Bridging Time Scales: Molecular Simulations for the Next Decade, eds. Nielaba, P., Mareschal, M., and Ciccotti, G. (Springer, Berlin), p. 67.Google Scholar
Tree, D. R., Wang, Y., and Dorfman, K. D. (2013), Phys. Rev. Lett. 110, 208103.Google Scholar
Ustinov, E. A., and Do, D. D. (2012a), J. Chem. Phys. 136, 134702.Google Scholar
Ustinov, E. A., and Do, D. D. (2012b), J. Colloid and Interface Sci. 366, 216.CrossRefGoogle Scholar
Viduna, D., Milchev, A., and Binder, K. (1998), Macromol. Theory and Simul. 7, 649.3.0.CO;2-J>CrossRefGoogle Scholar
Vink, R. L. C. and Horbach, J. (2004), J. Chem. Phys. 121, 3253.Google Scholar
Virnau, P. and Müller, M. (2004), J. Chem. Phys. 120, 10925.Google Scholar
Von Gottberg, F. K., Smith, K. A., and Hatton, T. A. (1997), J. Chem. Phys. 106, 9850.CrossRefGoogle Scholar
Voth, G. A. (ed.) (2009), Coarse-Graining of Condensed Phase and Biomolecular Systems (CRC Press, Boca Raton).Google Scholar
Weber, H., Marx, D., and Binder, K. (1995), Phys. Rev. B 15, 14636.Google Scholar
Werner, A., Schmid, F., Müller, M., and Binder, K. (1997), J. Chem. Phys. 107, 8175.Google Scholar
Widom, B. (1963), J. Chem. Phys. 39, 2808.Google Scholar
Wilding, N. (2006), in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, eds. Ferrario, M., Ciccotti, G., and Binder, K. (Springer, Heidelberg), vol. 1, p. 39.Google Scholar
Wilding, N. B. (1997), J. Phys. Condensed Matter 9, 585.Google Scholar
Wilding, N. B. (2001), Am. J. Phys. 69, 1147.Google Scholar
Wilding, N. B. and Binder, K. (1996), Physica A 231, 439.Google Scholar
Wilding, N. B. and Bruce, A. D. (2000), Phys. Rev. Lett. 85, 5138.Google Scholar
Wilding, N. B. and Landau, D. P. (2003), in Bridging Time Scales: Molecular Simulations for the Next Decade, eds. Nielaba, P., Marechal, M., and Ciccotti, G. (Springer, Heidelberg).Google Scholar
Wittmer, J. P., Beckrich, P., Meyer, H., Cavallo, A., Johner, A., and Baschnagel, J. (2007), Phys. Rev. E 76, 011803.Google Scholar
Yoon, D. Y., Smith, G. D., and Matsuda, T. (1993), J. Chem. Phys. 98, 10037.Google Scholar
Young, A. P. (1979), Phys. Rev. B 19, 1855.Google Scholar
Zollweg, J. A. and Chester, G. V. (1992), Phys. Rev. B 46, 11187.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Off-lattice models
  • David Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 24 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108780346.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Off-lattice models
  • David Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 24 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108780346.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Off-lattice models
  • David Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 24 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108780346.007
Available formats
×