Skip to main content Accessibility help
  • Print publication year: 2015
  • Online publication date: September 2015

4 - Organic thin-film transistors for biological applications

from Part I - Electronic components



In the past few years biosensing concepts based on organic field-effect transistors (OFETs) have attracted more and more attention. Here organic electronics benefit especially from the fact that solution-processable organic thin films can be used in flexible and disposable sensors. Additionally, the outstanding biocompatibility of many organic materials allows the use of organic sensing devices for in-vivo applications and permits the design of biodegradable sensors.

Starting from the basic principles of organic thin-film transistors, this chapter will present the state of the art of biosensing approaches based on OFETs, either back-gated or electrolyte-gated, focusing in particular on different functionalization methods to achieve a selective response of the OFET towards biologically relevant molecules. We present recently published applications of organic thin-film transistors ranging from the detection of biomolecules such as DNA, proteins, and enzymes to the sensing and stimulation of electrical activity potentials of neurons. The sensing mechanism and the influence of the Debye screening length on the detection of biomolecules will be discussed.

Background and introduction

Early and correct diagnosis of diseases plays a crucial role in modern medicine. For several decades researchers have been working on the discovery of biomarkers, molecular indicators giving early information about various diseases. For detection of the increasing number of biomarkers, low-cost, fast, and reliable methods are required.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Handbook of Bioelectronics
  • Online ISBN: 9781139629539
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
Clark, L. C. and Lyons, C., “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals New York Academy of Sciences, vol. 102, pp. 29–45, 1962.
Bettinger, C. J. and Bao, Z., “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Advanced Materials, vol. 22, no. 5, pp. 651–655, 2010.
Bettinger, C. J. and Bao, Z., “Biomaterials-based organic electronic devices,” Polymer International, vol. 59, no. 5, pp. 563–567, 2010.
Berggren, M. and Richter-Dahlfors, A., “Organic bioelectronics,” Advanced Materials, vol. 19, no. 20, pp. 3201–3213, 2007.
Mabeck, J. T. and Malliaras, G. G., “Chemical and biological sensors based on organic thin-film transistors,” Analytical and Bioanalytical Chemistry, vol. 384, no. 2, pp. 343–353, Jan. 2006.
Torsi, L., Farinola, G. M., Marinelli, F. et al., “A sensitivity-enhanced field-effect chiral sensor,” Nature Materials, vol. 7, no. 5, pp. 412–417, May 2008.
Tanese, M. C., Fine, D., Dodabalapur, A., and Torsi, L., “Interface and gate bias dependence responses of sensing organic thin-film transistors,” Biosensors & Bioelectronics, vol. 21, no. 5, pp. 782–788, Nov. 2005.
Kaempgen, M. and Roth, S., “Transparent and flexible carbon nanotube/polyaniline pH sensors,” Journal of Electroanalytical Chemistry, vol. 586, no. 1, pp. 72–76, Jan. 2006.
Bartic, C., Campitelli, A., and Borghs, S., “Field-effect detection of chemical species with hybrid organic/inorganic transistors,” Applied Physics Letters, vol. 82, no. 3, p. 475, 2003.
Bartic, C., Palan, B., Campitelli, A., and Borghs, G., “Monitoring pH with organic-based field-effect transistors,” Sensors and Actuators B, vol. 83, pp. 115–122, 2002.
Loi, A., Manunza, I., and Bonfiglio, A., “Flexible, organic, ion-sensitive field-effect transistor,” Applied Physics Letters, vol. 86, no. 10, p. 103512, 2005.
Bartic, C. and Borghs, G., “Organic thin-film transistors as transducers for (bio) analytical applications,” Analytical and Bioanalytical Chemistry, vol. 384, no. 2, pp. 354–365, 2005.
Sargent, A., Loi, T., Gal, S., and Sadik, O. A., “The electrochemistry of antibody-modified conducting polymer electrodes,” Journal of Electroanalytical Chemistry, vol. 470, no. 2, pp. 144–156, 1999.
Sargent, A. and Sadik, O. A., “Monitoring antibody–antigen reactions at conducting polymer-based immunosensors using impedance spectroscopy,” Electrochimica Acta, vol. 44, no. 26, pp. 4667–4675, 1999.
Meijerink, M. G. H., Strike, D. J., and De Rooij, N. F., “Reproducible fabrication of an array of gas-sensitive chemo-resistors with commercially available polyaniline,” Sensors and Actuators B, vol. 68, no. 1–3, pp. 5–8, 2007.
Sakurai, Y., Jung, H., Shimanouchi, T., and Inoguchi, T., “Novel array-type gas sensors using conducting polymers, and their performance for gas identification,” vol. 83, pp. 270–275, 2002.
Roberts, M. E., Mannsfeld, S. C. B., Queraltó, N. et al. “Water-stable organic transistors and their application in chemical and biological sensors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12134–12139, 2008.
Dang, L. A., Pham, M. C., Fabiano, S., and Tran-minh, C., “A glucose biosensor based on modified-enzyme incorporated films,” Journal of Electroanalytical Chemistry, vol. 512, pp. 101–109, 2001.
Sharma, S. K., Singhal, R., Malhotra, B. D., Sehgal, N., and Kumar, A., “Lactose biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene),” Biosensors & Bioelectronics, vol. 20, no. 3, pp. 651–657, Oct. 2004.
Sharma, S. K., Singhal, R., Malhotra, B. D., Sehgal, N., and Kumar, A., “Langmuir–Blodgett film based biosensor for estimation of galactose in milk,” Electrochimica Acta, vol. 49, no. 15, pp. 2479–2485, 2004.
Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., and Piana, C., “An amperometric glucose biosensor prototype fabricated by thermal inkjet printing,” Biosensors & Bioelectronics, vol. 20, no. 10, pp. 2019–2026, 2005.
Setti, L., Fraleoni-Morgera, A., Mencarelli, I., Filippini, A., Ballarin, B., and Dibiase, M., “An HRP-based amperometric biosensor fabricated by thermal inkjet printing,” Sensors and Actuators B: Chemical, vol. 126, no. 1, pp. 252–257, 2007.
Sze, S. M. and Kwok, K. N., Physics of Semiconductor Devices. New York: John Wiley and Sons Inc., 2007.
Zaumseil, J. and Sirringhaus, H., “Electron and ambipolar transport in organic field-effect transistors,” Chemical Reviews, vol. 107, no. 4, pp. 1296–1323, 2007.
Scarpa, G., Idzko, A.-L., Yadav, A., and Thalhammer, S., “Organic ISFET based on poly (3-hexylthiophene),” Sensors, vol. 10, no. 3, pp. 2262–2273, 2010.
Urien, M., Wantz, G., Cloutet, E. et al. “Field-effect transistors based on poly(3-hexylthiophene): Effect of impurities,” Organic Electronics, vol. 8, no. 6, pp. 727–734, 2007.
Buth, F., Kumar, D., Stutzmann, M., and Garrido, J. A., “Electrolyte-gated organic field-effect transistors for sensing applications,” Applied Physics Letters, vol. 98, no. 15, p. 153302, 2011.
Torsi, L., Marinelli, F., Angione, M. D. et al. “Contact effects in organic thin-film transistor sensors,” Organic Electronics, vol. 10, no. 2, pp. 233–239, Apr. 2009.
Kergoat, L., Herlogsson, L., Braga, D. et al.“A water-gate organic field-effect transistor,” Advanced Materials, vol. 22, no. 23, pp. 2565–2569, 2010.
Bürgi, L., Richards, T. J., Friend, R. H., and Sirringhaus, H., “Close look at charge carrier injection in polymer field-effect transistors,” Journal of Applied Physics, vol. 94, no. 9, p. 6129, 2003.
Aguirre, C. M., Ternon, C., Paillet, M., Desjardins, P., and Martel, R., “Carbon nanotubes as injection electrodes for organic thin film transistors,” Nano Letters, vol. 9, no. 4, pp. 1457–61, 2009.
Pernstich, K. P., Haas, S., Oberhoff, D., et al.“Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator,” Journal of Applied Physics, vol. 96, no. 11, p. 6431, 2004.
Kobayashi, S., Nishikawa, T., Takenobu, T., et al.“Control of carrier density by self-assembled monolayers in organic field-effect transistors,” Nature Materials, vol. 3, no. 5, pp. 317–322, 2004.
Horowitz, G., “Organic field-effect transistors,” Advanced Materials, vol. 10, no. 5, pp. 365–377, 1998.
Klauk, H., “Organic thin-film transistors,” Chemical Society Reviews, vol. 39, no. 7, pp. 2643–2666, 2010.
Newman, C. R., Chesterfield, R. J., Panzer, M. J., and Frisbie, C. D., “High mobility top-gated pentacene thin-film transistors,” Journal of Applied Physics, vol. 98, no. 8, p. 084506, 2005.
Lei, C. H., Das, A., Elliott, M., Macdonald, J. E., and Turner, M. L., “Au-poly(3-hexylthiophene) contact behaviour at high resolution,” Synthetic Metals, vol. 145, no. 2–3, pp. 217–220, 2004.
Roichman, Y. and Tessler, N., “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, vol. 80, no. 1, p. 151, 2002.
Spijkman, M.-J., Brondijk, J. J., Geuns, T. C. T. et al. “Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution,” Advanced Functional Materials, vol. 20, no. 6, pp. 898–905, Mar. 2010.
Cramer, T., Kyndiah, a., Murgia, M. et al. “Double layer capacitance measured by organic field effect transistor operated in water,” Applied Physics Letters, vol. 100, no. 14, p. 143302, 2012.
Facchetti, A., Yoon, M.-H., and Marks, T. J., “Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics,” Advanced Materials, vol. 17, no. 14, pp. 1705–1725, 2005.
Wang, G., “Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator,” Journal of Applied Physics, vol. 95, no. 1, p. 316, 2004.
Kim, S. H., Hong, K., Xie, W. et al. “Electrolyte-gated transistors for organic and printed electronics,” Advanced Materials, vol. 25, no. 13, pp. 1822–1846, 2012.
Laiho, A., Herlogsson, L., Forchheimer, R., Crispin, X., and Berggren, M., “Controlling the dimensionality of charge transport in organic thin-film transistors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15069–15073, 2011.
Lee, J., Kaake, L. G., Cho, J. H. et al. “Ion gel-gated polymer thin-film transistors: operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability,” Journal of Physical Chemistry C, vol. 113, no. 20, pp. 8972–8981, 2009.
Bard, A. J. and Faulkner, L. R., Electrochemical Methods –Fundamentals and Applications. New York: Wiley, 2001.
Tarabella, G., Santato, C., Yang, S. Y. et al.“Effect of the gate electrode on the response of organic electrochemical transistors,” Applied Physics Letters, vol. 97, no. 12, p. 123304, 2010.
Boddy, P. J., “The structure of the semiconductor-electrolyte interface,” Journal of Electroanalytical Chemistry, no. 10, pp. 199–244, 1965.
Grahame, D. C., “The electrical double layer and the theory of electrocapillarity,” Chemical Reviews, vol. 41, pp. 441–501, 1947.
Waleed Shinwari, M., Jamal Deen, M., and Landheer, D., “Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design,” Microelectronics Reliability, vol. 47, no. 12, pp. 2025–2057, 2007.
Birner, S., “Modeling of semiconductor nanostructures and semiconductor–electrolyte interfaces,” Unpublished PhD thesis, TU München, 2011.
Scarpa, G., Idzko, A.-L., Götz, S., and Thalhammer, S., “Advantages and applications of low-operating voltage organic thin-film transistors,” IEEE Nanotechnology Magazine, September, pp. 15–19, 2010.
Goetz, S. M., Erlen, C. M., , H. et al. “Organic field-effect transistors for biosensing applications,” Organic Electronics, vol. 10, no. 4, pp. 573–580, 2009.
Münzer, A. M., Heimgreiter, M., Melzer, K. et al.“Back-gated spray-deposited carbon nanotube thin film transistors operated in electrolytic solutions: an assessment towards future biosensing applications,” Journal of Materials Chemistry B, vol. 1, pp. 3797–3802, 2013.
Münzer, A. M., Melzer, K., Heimgreiter, M., and Scarpa, G., “Random CNT network and regioregular poly (3-hexylthiophen) FETs for pH sensing applications: A comparison,” BBA – General Subjects, pp. 2–7, 2013.
Cramer, T., Campana, A., Leonardi, F. et al.“Water-gated organic field effect transistors – opportunities for biochemical sensing and extracellular signal transduction,” Journal of Materials Chemistry B, vol. 1, pp. 3728–3741, 2013.
Kergoat, L., Piro, B., Berggren, M., Horowitz, G., and Pham, M.-C., “Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors.,” Analytical and Bioanalytical Chemistry, vol. 402, no. 5, pp. 1813–1826, 2012.
Lin, P. and Yan, F., “Organic thin-film transistors for chemical and biological sensing,” Advanced Materials, vol. 24, no. 1, pp. 34–51, 2012.
Schöning, M. J. and Poghossian, A., “Bio FEDs (field-effect devices): state-of-the-art and new directions,” Electroanalysis, vol. 18, no. 19–20, pp. 1893–1900, 2006.
Yan, F., Mok, S. M., Yu, J., Chan, H. L. W., and Yang, M., “Label-free DNA sensor based on organic thin film transistors,” Biosensors & Bioelectronics, vol. 24, no. 5, pp. 1241–1245, 2009.
Khan, H. U., Roberts, M. E., Johnson, O., et al. “In situ, label-free DNA detection using organic transistor sensors,” Advanced Materials (Deerfield Beach, Fla.), vol. 22, no. 40, pp. 4452–4456, 2010.
Stoliar, P., Bystrenova, E., Quiroga, S. D. et al.“DNA adsorption measured with ultra-thin film organic field effect transistors,” Biosensors & Bioelectronics, vol. 24, no. 9, pp. 2935–2938, 2009.
Zhang, Q., Jagannathan, L., and Subramanian, V., “Label-free low-cost disposable DNA hybridization detection systems using organic TFTs,” Biosensors & Bioelectronics, vol. 25, no. 5, pp. 972–977, 2010.
Kergoat, L., Piro, B., Berggren, M. et al. “DNA detection with a water-gated organic field-effect transistor,” Organic Electronics, vol. 13, no. 1, pp. 1–6, 2012.
Lai, S., Demelas, M., Casula, G. et al. “Ultralow voltage, OTFT-based sensor for label-free DNA detection,” Advanced Materials (Deerfield Beach, Fla.), vol. 25, no. 1, pp. 103–107, 2013.
Demelas, M., Lai, S., Spanu, A. et al. “Charge sensing by organic charge-modulated field effect transistors: application to the detection of bio-related effects,” Journal of Materials Chemistry B, , 2013.
Hammock, M. L., Sokolov, A. N., Stoltenberg, R. M., Naab, B. D., and Bao, Z., “Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection,” ACS Nano, vol. 6, no. 4, pp. 3100–3108, 2012.
Hammock, M. L., Knopfmacher, O., Naab, B. D., Tok, J. B-H., and Bao, Z., “Investigation of protein detection parameters using nanofunctionalized organic field-effect transistors,” ACS Nano, vol. 7, no. 5, pp. 3970–3980, 2013.
Padmanabhan, K., Padmanabhan, K. P., Ferrara, J. D., Sadler, J. E., and Tulinsky, A., “The structure of a-thrombin inhibited by a 15-mer single-stranded DNA aptamer,” The Journal of Biological Chemistry, vol. 268, no. 24, pp. 17651–17654, 1993.
Paborsky, L. R., McCurdy, S. N., Griffin, L. C., Toole, J. J., and Leung, L. L., “The single-stranded DNA aptamer-binding site of human thrombin,” The Journal of Biological Chemistry, vol. 268, no. 28, pp. 20808–20811, 1993.
Casalini, S., Leonardi, F., Cramer, T., and Biscarini, F., “Organic field-effect transistor for label-free dopamine sensing,” Organic Electronics, vol. 14, no. 1, pp. 156–163, 2013.
Suspène, C., Piro, B., Reisberg, S. et al., “Copolythiophene-based water-gated organic field-effect transistors for biosensing,” Journal of Materials Chemistry B, vol. 1, no. 15, p. 2090, 2013.
Magliulo, M., Mallardi, A., Mulla, M. Y. et al., “Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer,” Advanced Materials, vol. 25, no. 14, p. 1958, 2013.
Magliulo, M., Pistillo, B. R., Mulla, M. Y. et al. “PE-CVD of hydrophilic-COOH functionalized coatings on electrolyte gated field-effect transistor electronic layers,” Plasma Processes and Polymers, vol. 10, no. 2, pp. 102–109, 2013.
Cotrone, S., Ambrico, M., Toss, H. et al.“Phospholipid film in electrolyte-gated organic field-effect transistors,” Organic Electronics, vol. 13, no. 4, pp. 638–644, 2012.
Angione, M. D., Cotrone, S., Magliulo, M. et al. “Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 17, pp. 6429–6434, 2012.
Bergveld, P., “A critical evaluation of direct electrical protein detection methods,” Biosensors & Bioelectronics, vol. 6, no. 1, pp. 55–72, 1991.
Sorgenfrei, S., Chiu, C-Y., Johnston, M., Nuckolls, C., and Shepard, K. L., “Debye screening in single-molecule carbon nanotube field-effect sensors,” Nano Letters, vol. 11, no. 9, pp. 3739–43, 2011.
Kulkarni, G. S. and Zhong, Z., “Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor,” Nano Letters, vol. 12, no. 2, pp. 719–723, 2012.
Maehashi, K., Katsura, T., Kerman, K. et al.“Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors,” Analytical Chemistry, vol. 79, no. 2, pp. 782–787, 2007.
Khan, H. U., Roberts, M. E., Johnson, O., Knoll, W., and Bao, Z., “The effect of pH and DNA concentration on organic thin-film transistor biosensors,” Organic Electronics, vol. 13, no. 3, pp. 519–524, 2012.
Magliulo, M., Mallardi, A., Gristina, R. et al. “Part per trillion label-free electronic bioanalytical detection,” Analytical Chemistry, vol. 85, no. 8, pp. 3849–3857, 2013.
Daniela, M., Magliulo, M., Cotrone, S. et al. “Volatile general anesthetic sensing with organic field-effect transistors integrating phospholipid membranes,” Biosensors and Bioelectronics, vol. 40, no. 1, pp. 303–307, 2013.
Khan, H. U., Jang, J., Kim, J-J., and Knoll, W., “In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors,” Journal of the American Chemical Society, vol. 133, no. 7, pp. 2170–2176, 2011.
Buth, F., Donner, A., Sachsenhauser, M., Stutzmann, M., and Garrido, J. A., “Biofunctional electrolyte-gated organic field-effect transistors,” Advanced Materials, vol. 24, no. 33, pp. 1–7, 2012.
Buth, F., Kumar, D., Stutzmann, M., and Garrido, J. A., “Electrolyte-gated organic field-effect transistors for sensing applications,” Applied Physics Letters, vol. 98, no. 15, p. 153302, 2011.
Cramer, T., Chelli, B., Murgia, M. et al., “Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks,” Physical Chemistry Chemical Physics: PCCP, vol. 15, no. 11, pp. 3897–3905, 2013.
Benfenati, V., Toffanin, S., Bonetti, S. et al. “A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons,” Nature Materials, vol. 12, no. 5, pp. 1–9, 2013.