Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-19T17:42:37.115Z Has data issue: false hasContentIssue false

6 - Interactive theorem proving

Published online by Cambridge University Press:  30 September 2009

John Harrison
Affiliation:
Intel Corporation, Portland, Oregon
Get access

Summary

Our efforts so far have been aimed at making the computer prove theorems completely automatically. But the scope of fully automatic methods, subject to any remotely realistic limitations on computing power, covers only a very small part of present-day mathematics. Here we develop an alternative: an interactive proof assistant that can help to precisely state and formalize a proof, while still dealing with some boring details automatically. Moreover, to ensure its reliability, we design the proof assistant based on a very simple logical kernel.

Human-oriented methods

We've devoted quite a lot of energy to making computers prove statements completely automatically. The methods we've implemented are fairly powerful and can do some kinds of proofs better than (most) people. Still, the enormously complicated chains of logical reasoning in many fields of mathematics are seldom likely to be discovered in a reasonable amount of time by systematic algorithms like those we've presented. In practice, human mathematicians find these chains of reasoning using a mixture of intuition, experimentation with specific instances, analogy with or extrapolation from related results, dramatic generalization of the context (e.g. the use of complexanalytic methods in number theory) and of course pure luck – see Lakatos (1976), Polya (1954) and Schoenfeld (1985) for varied attempts to subject the process of mathematical discovery to methodological analysis. It's probably true to say that very few human mathematicians approach the task of proving theorems with methods like those we have developed.

One natural reaction to the limitations of systematic algorithmic methods is to try to design computer programs that reason in a more human-like style.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×