Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-2c8nx Total loading time: 0 Render date: 2025-06-24T11:35:29.009Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 May 2025

Bengt Fornberg
Affiliation:
University of Colorado Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abdeljawad, T. 2015. On conformable fractional calculus. J. Comp. Appl. Math., 279, 5766. (Cited on p. 141.)CrossRefGoogle Scholar
Abreu, R., Stich, D., and Morales, J. 2015. The complex-step-finite-difference method. Geophys. J. Int., 202(1), 7293. (Cited on p. 115.)CrossRefGoogle Scholar
Ahlfors, L. V. 1966. Complex Analysis. McGraw-Hill. (Cited on pp. 112 and 123.)Google Scholar
Angel, J. B., Banks, J. W., Carson, A. M., and Henshaw, W. D. 2023. Efficient up-wind finite-difference schemes for wave equations on overset grids. SIAM J. Sci. Comput., 45(5), A2703–A2724. (Cited on p. 84.)CrossRefGoogle Scholar
Apostol, T. M. 1999. An elementary view of Euler’s summation formula. Am. Math. Mon., 106(5), 409418. (Cited on p. 126.)CrossRefGoogle Scholar
Appelö, D., and Kreiss, G. 2006. A new absorbing layer for elastic waves. J. Comput. Phys., 215, 642660. (Cited on p. 84.)CrossRefGoogle Scholar
Appelö, D., Hagstrom, T., and Kreiss, G. 2006. Perfectly matched layers for hyperbolic systems: General formulation, well-posedness, and stability. SIAM J. Appl. Math., 67(1), 123. (Cited on p. 84.)CrossRefGoogle Scholar
Arakawa, T., Ibukiyama, T., and Kaneko, M. 2014. Bernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics. Springer. (Cited on p. 126.)Google Scholar
Ascher, U. M., and Petzold, L. R. 1988. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM. (Cited on p. 26.)Google Scholar
Ascher, U. M., Mattheij, R. M. M., and Russell, R. D. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM. (Cited on p. 26.)CrossRefGoogle Scholar
Ascher, U. M., Ruuth, S. J., and Spiteri, R. J. 1997. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math., 25(2–3), 151167. (Cited on p. 67.)CrossRefGoogle Scholar
Atkinson, K. E. 1988. An Introduction to Numerical Analysis. 2nd ed. John Wiley & Sons. (Cited on p. 126.)Google Scholar
Austin, A. P., Kravanja, P., and Trefethen, L. N. 2014. Numerical algorithms based on analytic function values at roots of unity. SIAM J. Numer. Anal., 52(4), 17951821. (Cited on p. 115.)CrossRefGoogle Scholar
Balam, R. I., and Zapata, M. U. 2022. A fourth-order compact implicit immersed interface method for 2D Poisson interface problems. Comput. Math. Appl., 119, 257277. (Cited on p. 83.)CrossRefGoogle Scholar
Barton, D., Willers, I. M., and Zahar, R. V. M. 1971. An implementation of the Taylor series method for ordinary differential equations. Comput. J., 14(3), 243248. (Cited on p. 31.)CrossRefGoogle Scholar
Bayliss, A., and Turkel, E. 1980. Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math., 33(6), 707725. (Cited on p. 84.)CrossRefGoogle Scholar
Bayliss, A., Goldstein, C. I., and Turkel, E. 1983. An iterative method for the Helmholtz equation. J. Comput. Phys., 49, 443457. (Cited on p. 82.)CrossRefGoogle Scholar
Bayona, V. 2019a. Comparison of moving least squares and RBF+poly for interpolation and derivative approximation. J. Sci. Comput., 81, 486512. (Cited on p. 86.)CrossRefGoogle Scholar
Bayona, V. 2019b. An insight into RBF-FD approximations augmented with polynomials. Comput. Math. Appl., 77, 23372353. (Cited on pp. 99, 100, 110, and 200.)CrossRefGoogle Scholar
Bayona, V., Flyer, N., and Fornberg, B. 2019. On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries. J. Comput. Phys., 380, 378399. (Cited on pp. 99, 100, 101, 110, 200, and 202.)CrossRefGoogle Scholar
Bayona, V., Flyer, N., Fornberg, B., and Barnett, G. A. 2017. On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys., 332, 257273. (Cited on pp. 111 and 201.)CrossRefGoogle Scholar
Bender, C. M., and Orszag, S. A. 1978. Advanced Methods for Scientists and Engineers. McGraw-Hill, 1978 (reprinted by Springer 1999). (Cited on pp. 6 and 190.)Google Scholar
Benjamin, T. B., and Feir, J. E. 1967. The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech., 27(3), 417430. (Cited on p. 66.)CrossRefGoogle Scholar
Berenger, J.-P. 1994. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2), 185200. (Cited on p. 84.)CrossRefGoogle Scholar
Berenger, J.-P. 2022. Perfectly Matched Layer (PML) for Computational Electromagnetics. Reprint of original edition, Morgan & Claypool 2007 ed. Synthesis Lectures on Computational Electromagnetics, no. 8. Springer. (Cited on p. 84.)Google Scholar
Berger, M. J., and Colella, P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82, 6484. (Cited on p. 83.)CrossRefGoogle Scholar
Berger, M. J., and Oliger, J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53(3), 484512. (Cited on p. 83.)CrossRefGoogle Scholar
Berger, M. J., George, D. L., LeVeque, R. J., and Mandli, K. L. 2011. The GeoClaw software for depth-averaged flows with adaptive refinement. Adv. Water Resour., 34(9), 11951206. (Cited on p. 83.)CrossRefGoogle Scholar
Berrut, J.-P., and Trefethen, L. N. 2004. Barycentric Lagrange interpolation. SIAM Rev., 46(3), 501517. (Cited on p. 156.)CrossRefGoogle Scholar
Björck, Å., and Pereyra, V. 1970. Solution of Vandermonde systems of equations. Math. Comput., 24(112), 893903. (Cited on p. 147.)CrossRefGoogle Scholar
Bochner, S. 1933. Monotone Functionen, Stieltjes Integrale und Harmonische Analyse. Math. Ann., 108, 378410. (Cited on p. 93.)CrossRefGoogle Scholar
Bollig, E., Flyer, N., and Erlebacher, G. 2012. Solution to PDEs using radial basis function finite differences (RBF-FD) on multiple GPUs. J. Comput. Phys., 231, 71337151. (Cited on p. 105.)CrossRefGoogle Scholar
Bornemann, F. 2011. Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals. Found. Comput. Math., 11, 163. (Cited on p. 116.)CrossRefGoogle Scholar
Borwein, J. M., Calkin, N. J., and Manna, D. 2009. Euler–Boole summation revisited. Am. Math. Mon., 116(5), 387412. (Cited on p. 137.)CrossRefGoogle Scholar
Boyd, J. P. 2000. Chebyshev and Fourier Spectral Methods. Dover. (Cited on pp. 17 and 68.)Google Scholar
Boyd, J. P., and Flyer, N. 1999. Compatibility conditions for time-dependent partial differential equations and the rate of convergence of Chebyshev and Fourier spectral methods. Comput. Meth. Appl. Mech. Eng., 175, 281309. (Cited on p. 65.)CrossRefGoogle Scholar
Bradie, B. 2006. A Friendly Introduction to Numerical Analysis. Pearson Prentice Hall. (Cited on p. 42.)Google Scholar
Brandt, A. 1977. Multi-level adaptive solutions to boundary-value problems. Math. Comput., 31, 333390. (Cited on p. 82.)CrossRefGoogle Scholar
Brezinski, C. 1991. History of Continued Fractions and Padé Approximants. Springer Series in Computational Mathematics, vol. 12. Springer. (Cited on p. 190.)CrossRefGoogle Scholar
Brezinski, C. 2009. The Birth of Numerical Analysis. Chapter 1: Some pioneers of extrapolation methods. World Scientific. (Cited on p. 185.)Google Scholar
Brezinski, C., and Redivo-Zaglia, M. 1991. Extrapolation Methods: Theory and Practice. North Holland. (Cited on pp. 138, 185, and 190.)Google Scholar
Brezinski, C., and Redivo-Zaglia, M. 2020. Extrapolation and Rational Approximation: The Works of the Main Contributors. Springer Nature Switzerland. (Cited on p. 190.)CrossRefGoogle Scholar
Briggs, W. L., Henson, V. E., and McCormick, S. F. 2000. A Multigrid Tutorial. 2nd ed. SIAM. (Cited on p. 82.)CrossRefGoogle Scholar
Brown, J. W., and Churchill, R. V. 2013. Complex Variables and Applications. 9th ed. McGraw Hill. (Cited on p. 112.)Google Scholar
Bungartz, H.-J., and Griebel, M. 2004. Sparse grids. Acta Numerica, 13, 147269. (Cited on p. 205.)CrossRefGoogle Scholar
Burden, R. L., and Faires, J. D. 2015. Numerical Analysis. 10th ed. Brooks/Cole – Cengage Learning. (Cited on p. 42.)Google Scholar
Burkardt, J., Wu, Y., and Zhang, Y. 2021. A unified meshfree pseudospectral method for solving both classical and fractional PDEs. SIAM J. Sci. Comput., 42(2), A1389–A1411. (Cited on p. 154.)Google Scholar
Butcher, J. C. 1996. A history of Runge-Kutta methods. Appl. Numer. Math., 20, 247260. (Cited on p. 29.)CrossRefGoogle Scholar
Butcher, J. C. 2016. Numerical Methods for Ordinary Differential Equations. 3rd ed. Wiley. (Cited on pp. 26 and 27.)CrossRefGoogle Scholar
Caflisch, R. E. 1998. Monte Carlo and quasi-Monte Carlo methods. Acta Numer., 7, 149. (Cited on p. 206.)CrossRefGoogle Scholar
Calhoun, D. 2002. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equation in irregular regions. J. Comput. Phys., 176, 231275. (Cited on p. 83.)CrossRefGoogle Scholar
Caputo, M. 1967. Linear model of dissipation whose Q is almost frequency independent – II. Geophys. J. R. Astron. Soc., 13, 529539. (Cited on p. 142.)CrossRefGoogle Scholar
Cardone, A., Jackiewicz, Z., Sandu, A., and Zhang, H. 2014. Extrapolation-based implicit-explicit general linear methods. Numer. Algor., 65, 377399. (Cited on p. 67.)CrossRefGoogle Scholar
Carpenter, M. H., Gottlieb, D., Abarbanel, S., and Don, W.-S. 1995. The theoretical accuracy of Runge-Kutta time discretization for the initial boundary value problem: A study of the boundary error. SIAM J. Sci. Comput., 16(6), 12411252. (Cited on p. 50.)CrossRefGoogle Scholar
Chang, Y. F., and Corliss, G. 1994. ATOMFT: Solving ODEs and DAEs using Taylor series. Comp. Math. Applic., 28(10–12), 209233. (Cited on p. 31.)CrossRefGoogle Scholar
Cheney, W., and Kincaid, D. 2012. Numerical Mathematics and Computing. 7th ed. Cengage Learning. (Cited on p. 42.)Google Scholar
Chesshire, G., and Henshaw, W. D. 1990. Composite overlapping meshed for the solution of partial differential equations. J. Comput. Phys., 90(1), 164. (Cited on p. 84.)CrossRefGoogle Scholar
Chu, T., and Schmidt, O. T. 2023. RBF-FD discretization of the Navier-Stokes equations using staggered nodes. J. Comput. Phys., 474, Article Nr: 111756. (Cited on p. 109.)CrossRefGoogle Scholar
Ciesielski, M. 2024. Numerical algorithms for approximation of fractional integrals and derivatives based on quintic spline interpolation. Symmetry, 16, Article Nr: 252. (Cited on p. 148.)CrossRefGoogle Scholar
Collatz, L. 1960. The Numerical Treatment of Differential Equations. Springer-Verlag. (Cited on p. 72.)Google Scholar
Cooley, J. W., and Tukey, J. W. 1965. An algorithm for the machine calculation of complex Fourier series. Math. Comput., 19, 297301. (Cited on p. 177.)CrossRefGoogle Scholar
Courant, R., Friedrichs, K., and Lewy, H. 1928. On the partial differential equations of mathematical physics. Math. Ann., 100, 32–74 (in German; reproduced in English in IBM Journal of Research and Development 11 (2), 1967, 215234). (Cited on p. 57.)Google Scholar
Dahlquist, G. 1956. Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand., 4, 3353. (Cited on p. 41.)CrossRefGoogle Scholar
Dahlquist, G. 1963. A special stability problem for linear multistep methods. BIT, 3, 2743. (Cited on p. 41.)CrossRefGoogle Scholar
Daoud, M., and Laamri, E. H. 2022. Fractional Laplacian: A short survey. Dis. Cont. Dynam. Syst. S, 15(1), 95116. (Cited on p. 150.)CrossRefGoogle Scholar
de Boor, C. 1962. Bicubic spline interpolation. J. Mathematics and Physics, 41(1–4), 212218. (Cited on p. 165.)CrossRefGoogle Scholar
de Boor, C. 2001. A Practical Guide to Splines. Revised ed. Springer. (Cited on pp. 159 and 164.)Google Scholar
D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., and Zhou, Z. 2020. Numerical methods for nonlocal and fractional models. Acta Numerica, 29, 1124. (Cited on p. 150.)CrossRefGoogle Scholar
Demmel, J., and Koev, P. 2005. The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM J. Matrix Anal. Appl., 27(1), 142152. (Cited on p. 147.)CrossRefGoogle Scholar
Deshpande, V. M., Bhattacharya, R., and Donzis, D. A. 2021. A unified framework to generate optimized compact finite difference schemes. J. Comput. Phys., 432, Article Nr: 110157. (Cited on p. 195.)CrossRefGoogle Scholar
Deuflhard, P., and Bornemann, F. 2002. Scientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics, vol. 42. Springer. (Cited on p. 26.)CrossRefGoogle Scholar
Dierckx, P. 1993. Fitting with Splines. Oxford University Press. (Cited on p. 159.)CrossRefGoogle Scholar
Diethelm, K. 2010. The Analysis of Fractional Differential Equations. Springer. (Cited on p. 141.)CrossRefGoogle Scholar
Dragomir, S. S., Agarwal, R. P., and Cerone, P. 2000. On Simpson’s inequality and applications. J. Ineq. App., 5(6), 533579. (Cited on p. 140.)Google Scholar
Driscoll, T. A., and Fornberg, B. 1999. Block pseudospectral methods for Maxwell’s equations II: Two-dimensional, discontinuous-coefficient case. SIAM J. Sci. Comput., 21(3), 11461167. (Cited on p. 84.)CrossRefGoogle Scholar
Driscoll, T. A., and Fornberg, B. 2001. A Padé-based algorithm for overcoming the Gibbs phenomenon. Num. Algor., 26, 7792. (Cited on p. 23.)CrossRefGoogle Scholar
Driscoll, T. A., and Fornberg, B. 2002. Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Applic., 43, 413422. (Cited on p. 94.)CrossRefGoogle Scholar
Dutt, A., and Rokhlin, V. 1993. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput., 14(6), 13681393. (Cited on p. 179.)CrossRefGoogle Scholar
Eckhoff, K. S. 1998. On a high order numerical method for functions with singularities. Math. Comput., 67, 10631087. (Cited on p. 23.)CrossRefGoogle Scholar
Ellison, A. C., and Fornberg, B. 2021. A parallel-in-time approach for wave-type PDEs. Numerische Mathematik, 148, 7998. (Cited on pp. 200, 202, and 203.)CrossRefGoogle Scholar
Engquist, B., and Majda, A. 1979. Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math., 32(3), 312358. (Cited on p. 84.)CrossRefGoogle Scholar
Ernst, O. G., and Gander, M. J. 2012. Why it is difficult to solve Helmholtz problems with classical iterative methods. Pages 325–363 of: Graham, I., Hou, T., Lakkis, O., and Scheichl, R. (eds.), Numerical Analysis of Multiscale Problems. Lecture Notes in Computational Science and Engineering, vol. 83. Springer. (Cited on p. 82.)Google Scholar
Falgout, R. D. 2006. An introduction to algebraic multigrid. Comp. Sci. Engin., 8(6), 2433. (Cited on p. 83.)CrossRefGoogle Scholar
Fasondini, M., Fornberg, B., and Weideman, J. A. C. 2017. Methods for the computation of the multivalued Painlevé transcendents on their Riemann surfaces. J. Comput. Phys., 344, 3650. (Cited on p. 30.)CrossRefGoogle Scholar
Fasshauer, G. E. 2007. Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences 6. World Scientific Publishers. (Cited on pp. 89, 90, and 93.)CrossRefGoogle Scholar
Fasshauer, G. E., and McCourt, M. J. 2012. Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput., 34(2), A737–A762. (Cited on p. 95.)CrossRefGoogle Scholar
Fathi, A., Poursartip, B., and Kallivokas, L. F. 2015. Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media. Num. Meth. in Eng., 101(3), 165198. (Cited on p. 84.)CrossRefGoogle Scholar
Fedoseyev, A. I., Friedman, M. J., and Kansa, E. J. 2002. Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary. Comput. Math. Applic., 43(3), 439455. (Cited on p. 111.)CrossRefGoogle Scholar
Ferraro, G. 2008. The Rise and Development of the Theory of Series up to the Early 1820s. Sources and Studies in the History of Mathematics and Physical Sciences. Springer. (Cited on p. 126.)Google Scholar
Floater, M. S., and Hormann, K. 2007. Barycentric rational interpolation with no poles and high rates of approximation. Numerische Mathematik, 107(2), 315331. (Cited on p. 156.)CrossRefGoogle Scholar
Flyer, N., and Fornberg, B. 2003. On the nature of initial-boundary value solutions for dispersive equations. SIAM J. Appl. Math., 64(2), 546564. (Cited on p. 65.)Google Scholar
Flyer, N., Lehto, E., Blaise, S., Wright, G. B., and St-Cyr, A. 2012. A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere. J. Comput. Phys., 231, 40784095. (Cited on p. 106.)CrossRefGoogle Scholar
Flyer, N., Fornberg, B., Bayona, V., and Barnett, G. A. 2016. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys., 321, 2138. (Cited on p. 104.)CrossRefGoogle Scholar
Forest, E., and Ruth, R. D. 1990. Fourth order symplectic integration. Phys. D, 43, 105117. (Cited on p. 68.)CrossRefGoogle Scholar
Fornberg, B. 1973. On the instability of leap-frog and Crank-Nicolson approximations of a nonlinear partial differential equation. Math. Comput., 27, 4557. (Cited on p. 21.)CrossRefGoogle Scholar
Fornberg, B. 1981. Numerical differentiation of analytic functions. ACM Trans. Math. Software, 7(4), 512526. (Cited on pp. 115 and 116.)CrossRefGoogle Scholar
Fornberg, B. 1987. The pseudospectral method: Comparisons with finite differences for the elastic wave equation. Geophysics, 52(4), 483501. (Cited on pp. 19 and 20.)CrossRefGoogle Scholar
Fornberg, B. 1988a. Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput., 51(184), 699706. (Cited on p. 5.)CrossRefGoogle Scholar
Fornberg, B. 1988b. Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech., 190, 471489. (Cited on p. 84.)CrossRefGoogle Scholar
Fornberg, B. 1990. High-order finite differences and the pseudospectral method on staggered grids. SIAM J. Num. Anal., 27(4), 904918. (Cited on p. 19.)CrossRefGoogle Scholar
Fornberg, B. 1996. A Practical Guide to Pseudospectral Methods. Cambridge Monographs on Applied and Computational Mathematics, vol. 1. Cambridge University Press. (Cited on pp. 13, 17, 23, 40, 50, 57, 63, and 158.)CrossRefGoogle Scholar
Fornberg, B. 1998. Calculation of weights in finite difference formulas. SIAM Rev., 40(3), 685691. (Cited on p. 5.)CrossRefGoogle Scholar
Fornberg, B. 2010. A finite difference method for free boundary problems. J. Comp. Appl. Math., 233, 28312840. (Cited on p. 83.)CrossRefGoogle Scholar
Fornberg, B. 2020. Euler-Maclaurin expansions without analytic derivatives. Proc. Royal Soc. London, Series A, 476, Article Nr: 20200441. (Cited on pp. 126, 131, and 132.)Google Scholar
Fornberg, B. 2021a. An algorithm for calculating Hermite-based finite difference weights. IMA J. Numer. Anal., 41, 801813. (Cited on pp. 14 and 156.)CrossRefGoogle Scholar
Fornberg, B. 2021b. Contour integrals of analytic functions given on a grid in the complex plane. IMA J. Numer. Anal., 41, 814825. (Cited on pp. 133, 135, and 136.)CrossRefGoogle Scholar
Fornberg, B. 2021c. Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences. ed. Daya Sagar, B. S. et. al. Springer. Chap. Splines. (Cited on pp. 159, 161, 163, 164, and 165.)Google Scholar
Fornberg, B. 2021d. Generalizing the trapezoidal rule in the complex plane. Num. Algor., 87, 187202. (Cited on p. 136.)CrossRefGoogle Scholar
Fornberg, B. 2021e. Improving the accuracy of the trapezoidal rule. SIAM Rev., 63(1), 167180. (Cited on p. 197.)CrossRefGoogle Scholar
Fornberg, B. 2022. Finite difference formulas in the complex plane. Num. Algor., 90, 13051326. (Cited on pp. 78 and 118.)CrossRefGoogle Scholar
Fornberg, B. 2023. Infinite order accuracy limit of finite difference formulas in the complex plane. IMA J. Num. Anal., 43, 30553072. (Cited on pp. 119, 120, and 134.)CrossRefGoogle Scholar
Fornberg, B., and Driscoll, T. A. 1999. A fast spectral algorithm for nonlinear wave equations with linear dispersion. J. Comput. Phys., 155, 456467. (Cited on p. 68.)CrossRefGoogle Scholar
Fornberg, B., and Elcrat, A. 2014. Some observations regarding steady laminar flows past bluff bodies. Phil. Trans. Soc, Royal. A., 372, Article Nr: 20130353. (Cited on p. 70.)Google ScholarPubMed
Fornberg, B., and Flyer, N. 2015a. Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comp. Math. Applic., 69, 531544. (Cited on pp. 207 and 208.)CrossRefGoogle Scholar
Fornberg, B., and Flyer, N. 2015b. A Primer on Radial Basis Functions with Applications to the Geosciences. CBMS-NSF, vol. 87. SIAM. (Cited on pp. 23, 39, 40, 90, 93, 94, 106, and 206.)CrossRefGoogle Scholar
Fornberg, B., and Flyer, N. 2015c. Solving PDEs with radial basis functions. Acta Numerica, 24, 215258. (Cited on pp. 90 and 92.)CrossRefGoogle Scholar
Fornberg, B., and Lawrence, A. P. 2023. Enhanced trapezoidal rule for discontinuous functions. J. Comput. Phys., 491, Article Nr: 112386. (Cited on pp. 197 and 198.)CrossRefGoogle Scholar
Fornberg, B., and Lehto, E. 2011. Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys., 230, 22702285. (Cited on pp. 106, 107, 108, and 109.)CrossRefGoogle Scholar
Fornberg, B., and Piret, C. 2007. A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput., 30(1), 6080. (Cited on p. 95.)CrossRefGoogle Scholar
Fornberg, B., and Piret, C. 2020. Complex Variables and Analytic Functions: An Illustrated Introduction. SIAM. (Cited on pp. 6, 30, 35, 112, 116, 123, 139, and 152.)Google Scholar
Fornberg, B., and Piret, C. 2023. Computation of fractional derivatives of analytic functions. J. Sci. Comput., 96, Article Nr: 79. (Cited on pp. 142, 144, 149, and 150.)CrossRefGoogle Scholar
Fornberg, B., and Weideman, J. A. C. 2011. A numerical method for the Painlevé equations. J. Comput. Phys., 230, 59575973. (Cited on pp. 30 and 133.)CrossRefGoogle Scholar
Fornberg, B., and Whitham, G. B. 1978. A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. Royal Soc. Ser. A, 289, 373404. (Cited on pp. 67 and 68.)Google Scholar
Fornberg, B., and Wright, G. 2004. Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Applic., 48, 853867. (Cited on p. 95.)CrossRefGoogle Scholar
Fornberg, B., Zuev, J., and Lee, J. 2007. Stability and accuracy of time-extrapolated ADI-FDTD methods for solving wave equations. J. Comput. Appl. Math., 200, 178192. (Cited on p. 201.)CrossRefGoogle Scholar
Fornberg, B., Flyer, N., and Russell, J. M. 2010. Comparisons between pseudospectral and radial basis function derivative approximations. IMA J. Numer. Anal., 30, 149172. (Cited on pp. 24 and 25.)CrossRefGoogle Scholar
Fornberg, B., Larsson, E., and Flyer, N. 2011. Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput., 33(2), 869892. (Cited on p. 95.)CrossRefGoogle Scholar
Fornberg, B., Lehto, E., and Powell, C. 2013. Stable calculation of Gaussian-based RBF-FD stencils. Comp. Math. Applic., 65, 627637. (Cited on p. 95.)CrossRefGoogle Scholar
Fornberg, B., Piret, C., and Higgins, A. 2025. The Fundamentals of Fractional Calculus. AAP / CRC Press. Chap. 6. Numerical computation of fractional derivatives of Caputo type. Eds: Singh, D. K. and Yavuz, M.. (Cited on p. 142.)Google Scholar
Fox, L. 1947. Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations. Proc. R. Soc. London, Ser. A, 190, 3159. (Cited on pp. 45 and 72.)Google Scholar
Gander, M. J. 2015. 50 years of time parallel time integration. Pages 69–113 of: Carraro, T., Geiger, M., Körkel, S., and Rannacher, R. (eds.), in Multiple Shooting and Time Domain Decomposition Methods. Springer. (Cited on pp. 29 and 200.)Google Scholar
Gardner, C. S., Green, J. M., Kruskal, M. D., and Miura, R. M. 1967. Method for solving the Korteweg-deVries equation. Phys. Rev. Lett., 19, 10951097. 1967. (Cited on p. 66.)CrossRefGoogle Scholar
Garofalo, N. 2019. Fractional thoughts. Pages 1–135 of: Petroysan, A., Danielli, D. and Pop, C. A. (eds.), New Developments in the Analysis of Nonlocal Operators. Contemporary Mathematics, vol. 723. American Mathematical Society. (Cited on p. 150.)Google Scholar
Gavete, L., Gavete, M. L., and Benito, J. J. 2003. Improvements of generalized finite difference method and comparison with other meshless method. Appl. Math. Modelling, 27, 831847. (Cited on p. 85.)CrossRefGoogle Scholar
Gerstner, T., and Griebel, M. 1998. Numerical integration using sparse grids. Numerical Algorithms, 18, 209232. (Cited on p. 205.)CrossRefGoogle Scholar
Ghrist, M., Fornberg, B., and Driscoll, T. A. 2000. Staggered time integrators for wave equations. SIAM J. Num. Anal., 38(3), 718741. (Cited on p. 58.)CrossRefGoogle Scholar
Ghrist, M. L., Fornberg, B., and Reeger, J. A. 2015. Stability ordinates of Adams predictor-corrector methods. BIT, 55, 733750. (Cited on p. 40.)CrossRefGoogle Scholar
Gibou, F., Fedkiw, R., and Osher, S. 2018. A review of level-set methods and some recent applications. J. Comput. Phys., 353, 82109. (Cited on p. 84.)CrossRefGoogle Scholar
Giles, M. B. 2015. Multilevel Monte Carlo methods. Acta Numerica, 24, 259328. (Cited on p. 206.)CrossRefGoogle Scholar
Giraldo, F. X., Kelly, J. F., and Constantinescu, E. M. 2013. Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput., 35(5), B1162–B1194. (Cited on p. 67.)CrossRefGoogle Scholar
Givoli, D. 2023. Dahlquist’s barriers and much beyond. J. Comput. Phys., 475, Article Nr: 111836. (Cited on p. 41.)CrossRefGoogle Scholar
Glassman, J. A. 1970. A generalization of the fast Fourier transform. IEEE Trans. Comput., C-19, 105116. (Cited on p. 179.)CrossRefGoogle Scholar
Glaubitz, J., Klein, S. C., Nordström, J., and Öffner, P. 2023. Multi-dimensional summation-by-parts operators for general functioon spaces: Theory and construction. J. Comput. Phys., 491, Article Nr: 112370. (Cited on p. 57.)CrossRefGoogle Scholar
Glusa, C., Antil, H., D’elia, M., Waanders, B. V., and Weiss, C. J. 2021. A fast solver for the fractional order Helmholtz equation. SIAM J. Sci. Comput., 43(2), A1362– A1388. (Cited on p. 151.)CrossRefGoogle Scholar
Golub, G. H., and Loan, C. F. Van. 2013. Matrix Computations. 4th ed. Johns Hopkins University Press. (Cited on p. 82.)CrossRefGoogle Scholar
Gonnet, P., Güttel, S., and Trefethen, L. N. 2013. Robust Padé approximation via SVD. SIAM Review, 55(1), 101117. (Cited on p. 190.)CrossRefGoogle Scholar
Gorenflo, R., and Mainardi, F. 2008. Fractional calculus: Integral and differential equations of fractional order. ArXiv:0805.3823v1. (Cited on p. 142.)Google Scholar
Gottlieb, D., and Shu, C.-W. 1997. On the Gibbs phenomenon and its resolution. SIAM Review, 39, 644668. (Cited on p. 23.)CrossRefGoogle Scholar
Gottlieb, S., Ketcheson, D., and Shu, C.-W. 2011. Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific. (Cited on p. 71.)CrossRefGoogle Scholar
Gragg, W. B. 1965. On extrapolation algorithms for ordinary initial value problems. SIAM J. Num. Anal., 2, 384404. (Cited on p. 36.)Google Scholar
Greengard, L., and Lee, J.-Y. 2004. Accelerating the nonuniform fast Fourier transform. SIAM Rev., 46(3), 443454. (Cited on p. 179.)CrossRefGoogle Scholar
Gregory, J. 1670. Letter to J. Collins, 23 November 1670. Reprinted in Correspondence of Scientific Men, S. Rigaud. Oxford University Press, pp. 203–212, (1841). (Cited on p. 128.)Google Scholar
Griewank, A., and Walther, A. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. 2nd ed. SIAM. (Cited on p. 31.)CrossRefGoogle Scholar
Gunderman, D., Flyer, N., and Fornberg, B. 2020. Transport schemes in spherical geometries using spline-based RBF-FD with polynomials. J. Comput. Phys., 408, Article Nr: 109256. (Cited on p. 110.)CrossRefGoogle Scholar
Gupta, M. M. 1991. High accuracy solutions of incompressible Navier–Stokes equations. J. Comput. Phys., 93, 343359. (Cited on p. 73.)CrossRefGoogle Scholar
Gupta, M. M., Manohar, R. P., and Stephenson, J. W. 1984. A single cell high-order scheme for the convection diffusion equation with variable coefficients. Int. J. Num. Meth. Fluids, 4(7), 641651. (Cited on p. 71.)CrossRefGoogle Scholar
Gustafsson, B. 2008. High Order Difference Methods for Time Dependent PDE. Springer Series in Computational Mathematics, vol. 38. Springer. (Cited on pp. 26, 51, 57, and 71.)Google Scholar
Gustafsson, B., Kreiss, H.-O., and Oliger, J. 2013. Time-Dependent Problems and Difference Methods. 2nd ed. Pure and Applied Mathematics. John Wiley & Sons. (Cited on pp. 21 and 57.)CrossRefGoogle Scholar
Guzmán, P. M., Langton, G., Bittencurt, L. M. Motta, Lugo, Medina, J., and Valdes, J. E. Nápoles. 2018. A new definition of a fractional derivative of local type. J. Math. Anal., 9(2), 8898. (Cited on p. 141.)Google Scholar
Hairer, E., and Wanner, G. 2002. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. 2nd ed. Springer. (Cited on p. 26.)Google Scholar
Hairer, E., Nørsett, S. P., and Wanner, G. 1992. Solving Ordinary Differential Equations I: Nonstiff Problems. 2nd revised ed. Springer. (Cited on pp. 26, 31, and 36.)Google Scholar
Halko, N., Martinsson, P. G., and Tropp, J. A. 2011. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(3), 217288. (Cited on p. 81.)CrossRefGoogle Scholar
Hardy, R. L. 1971. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., 76, 19051915. (Cited on p. 90.)CrossRefGoogle Scholar
Harlow, F. H., and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Flu., 8(12), 21822189. (Cited on pp. 58 and 108.)CrossRefGoogle Scholar
Henshaw, W. D., and Schwendeman, D. W. 2006. Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow. J. Comput. Phys., 216, 744779. (Cited on p. 84.)CrossRefGoogle Scholar
Hestens, M. R., and Stiefel, E. 1952. Methods of conjugate gradients for solving linear systems. J. Res. National Bureau of Standards, 49(6), 409436. (Cited on p. 82.)CrossRefGoogle Scholar
Hesthaven, J. S. 2018. Numerical Methods for Conservation Laws. SIAM. (Cited on p. 71.)CrossRefGoogle Scholar
Higgins, A. 2022. Numerical computations of fractional derivatives of analytic functions. SIAM Undergrad. Res. Online, 15, 511525. (Cited on p. 150.)CrossRefGoogle Scholar
Higham, N. J. 2004. The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal., 24(4), 547556. (Cited on p. 156.)CrossRefGoogle Scholar
Hiptmair, R., Moiola, A., and Perugia, I. 2016. A survey of Trefftz methods for the Helmholtz equation. Pages 237–279 of: Barrenechea, G. R., Brezzi, F., Cangiani, A., and Georgoulis, E. H. (eds.), Building Bridges: Connections and Challenges in Modern Approaches to Numerical Patrial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114. Springer. (Cited on p. 76.)Google Scholar
Hochbruck, M., and Ostermann, A. 2010. Exponential integrators. Acta Numerica, 19, 209286. (Cited on p. 67.)CrossRefGoogle Scholar
Hofreither, C. 2020. A unified view of some numerical methods for fractional diffusion. Comp. Math. Applic., 80, 332350. (Cited on p. 151.)CrossRefGoogle Scholar
Hofreither, C. 2021. An algorithm for best rational approximation based on barycentric rational interpolation. Num. Algor., 88, 365388. (Cited on p. 156.)CrossRefGoogle Scholar
Holberg, O. 1987. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geo. Prosp., 35(6), 629655. (Cited on p. 195.)CrossRefGoogle Scholar
Hung, Y.-C. 2023. A review of Monte Carlo and quasi-Monte Carlo sampling techniques. Wiley Interdisciplinary Reviews (WIREs). (Cited on p. 206.)Google Scholar
Iserles, A. 2012. A First Course in the Numerical Analysis of Differential Equations. 2nd ed. Cambridge Texts in Applied Mathematics, vol. 44. Cambridge University Press. (Cited on pp. 26 and 49.)Google Scholar
Iserles, A., and Nørsett, S. P. 1990. On the theory of parallel Runge-Kutta methods. IMA J. Numer. Anal., 10(4), 463488. (Cited on p. 29.)CrossRefGoogle Scholar
Ishteva, M. K. 2005. Properties and applications of the Caputo fractional operator. M.Phil. thesis, University of Karlsruhe. (Cited on p. 142.)Google Scholar
Iske, A. 2003. On the approximation order and numerical stability of local Lagrange interpolation by polyharmonic splines. Haussman, W., Jetter, K., Reimer, M., and Stöckler, J. (eds.), in Modern Developments in Multivariate Approximation. International Series of Numerical Mathematics, vol. 145. Birkhäuser Verlag. (Cited on p. 104.)Google Scholar
Jensen, P. S. 1972. Finite difference techniques for variable grids. Comp. Struct., 2, 1729. (Cited on pp. 85 and 86.)CrossRefGoogle Scholar
Johnson, S. G. 2021. Notes on perfectly matched layers (PMLs). ArXiv: 2108.05348v1. (Cited on p. 84.)Google Scholar
Kansa, E. J. 1990a. Multiquadrics – a scattered data approximation scheme with applications to computational fluid dynamics I: Surface approximations and partial derivative estimates. Comp. Math. Applic., 19, 127145. (Cited on p. 92.)CrossRefGoogle Scholar
Kansa, E. J. 1990b. Multiquadrics – a scattered data approximation scheme with applications to computational fluid dynamics II: Solutions to parabolic, hyperbolic and elliptic partial differential equations. Compt. Math. Applic., 19, 147161. (Cited on p. 92.)CrossRefGoogle Scholar
Kassam, A. K., and Trefethen, L. N. 2005. Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput., 26(4), 12141233. (Cited on p. 67.)CrossRefGoogle Scholar
Ketcheson, D. I., and Ahmadia, A. J. 2012. Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci., 7, 247271. (Cited on p. 202.)CrossRefGoogle Scholar
Ketcheson, D. I., and BinWaheed, U. 2014. A comparison of high-order explicit Runge-Kutta, extrapolation, and deferred correction methods in serial and parallel. Commun. Appl. Math. Comput. Sci., 9, 175200. (Cited on p. 29.)CrossRefGoogle Scholar
Khalil, R., Horani, M. Al, Yousef, A., and Sababheh, M. 2014. A new definition of fractional derivative. J. Comp. Appl. Math., 264, 6570. (Cited on p. 141.)CrossRefGoogle Scholar
Kilbas, A. A., Srivastava, H. M., and Trujillo, J. I. 2006. Theory and Applications of Fractional Differential Equations. Elsevier. (Cited on p. 142.)Google Scholar
Kinnmark, I. P. E., and Gray, W. G. 1984. One step integration methods with maximum stability regions. Math. Comput. Simul., 26, 8792. (Cited on p. 202.)CrossRefGoogle Scholar
Kreiss, H.-O., and Oliger, J. 1972. Comparison of accurate methods for the integration of hyperbolic equations. Tellus, 24, 199215. (Cited on pp. 19 and 20.)CrossRefGoogle Scholar
Kreiss, H.-O., and Ortiz, O. E. 2014. Introduction to Numerical Methods for Time Dependent Differential Equations. Wiley. (Cited on p. 49.)Google Scholar
Krogh, F. T. 1966. Predictor-corrector methods of high order with improved stability characteristics. J. Assoc. Comp. Mach., 13(3), 374385. (Cited on p. 40.)CrossRefGoogle Scholar
Krusemeyer, M. 1994. Differential Equations. Macmillan College Publishing. (Cited on p. 68.)Google Scholar
Kumari, K., Bhattacharya, R., and Donzis, D. A. 2019. A unified approach for deriving optimal finite differences. J. Comput Phys., 399, Article Nr: 108957. (Cited on p. 195.)CrossRefGoogle Scholar
Kunz, K. S., and Lubbers, R. J. 1993. The Finite Difference Time Domain Method for Electromagnetics. CRC Press. (Cited on p. 61.)Google Scholar
Lambe, L. A., Luczak, R., and Nehrbass, J. W. 2003. A new finite difference method for the Helmholtz equation using symbolic computation. Int. J. Comp. Eng, Sci., 4(1), 121144. (Cited on p. 76.)CrossRefGoogle Scholar
Lambert, J. D. 1991. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. 1st ed. Wiley. (Cited on pp. 26, 27, and 36.)Google Scholar
Lancaster, P., and Salkauskas, K. 1981. Surfaces generated by moving least squares methods. Math. Comput., 37(155), 141158. (Cited on p. 88.)CrossRefGoogle Scholar
Lanzara, F., Maz’ya, V., and Schmidt, G. 2022. Fast computation of the multidimensional fractional Laplacian. Applic. Anal., 101(11), 40254041. (Cited on p. 153.)CrossRefGoogle Scholar
Larsson, E., and Fornberg, B. 2003. A numerical study of some radial basis function based solution methods for elliptic PDEs. Comp. Math. Applic., 46(5), 891902. (Cited on p. 111.)CrossRefGoogle Scholar
Lawrence, A. P., Nielsen, M. E., and Fornberg, B. 2024. Node subsampling for multilevel meshfree elliptic PDE solvers. Comp. Math. Applic., 164, 7994. (Cited on pp. 111 and 210.)CrossRefGoogle Scholar
Lax, P. D. 1967. Hyperbolic difference equations: A review of the Courant-Friedrichs-Lewy paper in the light of recent developments. IBM J., 11, 235238. (Cited on p. 57.)CrossRefGoogle Scholar
Lax, P. D., and Richtmyer, R. D. 1956. Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math., 9(2), 267293. (Cited on p. 51.)CrossRefGoogle Scholar
Lee, J., and Fornberg, B. 2003. A split step approach for the 3-D Maxwell’s equations. J. Comput. Appl. Math., 158, 485505. (Cited on p. 68.)CrossRefGoogle Scholar
Leinen, W. 2024. Iterative solvers for RBF-FD discretized flow problems. Ph.D. thesis, Technical University of Hamburg. (Cited on p. 111.)Google Scholar
Lele, S. K. 1992. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103, 1642. (Cited on p. 71.)CrossRefGoogle Scholar
LeVeque, R. J. 1990, 2nd ed. 2008. Numerical Methods for Conservation Laws. Birkhäuser. (Cited on p. 71.)CrossRefGoogle Scholar
LeVeque, R. J. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, vol. 31. Cambridge University Press. (Cited on pp. 58 and 71.)CrossRefGoogle Scholar
LeVeque, R. J. 2007. Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM. (Cited on pp. 26 and 49.)CrossRefGoogle Scholar
Li, C., and Zeng, F. 2015. Numerical Methods for Fractional Calculus. CRC Press. (Cited on p. 144.)CrossRefGoogle Scholar
Li, M., Tang, T., and Fornberg, B. 1995. A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 20, 11371151. (Cited on p. 71.)CrossRefGoogle Scholar
Li, Z., and Ito, K. 2006. The Immersed Interface Method. SIAM. (Cited on p. 83.)CrossRefGoogle Scholar
Liouville, J. 1832. Memóire sur le calcul des différentielles à indices quelconques. J. de l’École Polytechnique, Paris, 13, 71162. (Cited on p. 141.)Google Scholar
Lipnikov, K., Manzini, G., and Shaskow, M. 2014. Mimetic finite difference method. J. Comput. Phys., 257, 11631227. (Cited on p. 194.)CrossRefGoogle Scholar
Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M. M., Ainsworth, M., and Karniadakis, G.Em. 2020. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys., 404, Article Nr: 109009. (Cited on p. 151.)CrossRefGoogle Scholar
Liszka, T., and Orkisz, J. 1980. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comp. Struct., 11, 8395. (Cited on p. 85.)CrossRefGoogle Scholar
Lynch, R. E., and Rice, J. R. 1978. High accuracy finite difference approximations to solutions of elliptic partial differential equations. Proc. Natl. Acad. Sci. USA, 75(6), 25412544. (Cited on p. 73.)CrossRefGoogle ScholarPubMed
Lyness, J. N., and Moler, C. B. 1967. Numerical differentiation of analytic functions. SIAM J. Numer. Anal., 4, 202210. (Cited on p. 115.)CrossRefGoogle Scholar
Lyness, J. N., and Sande, G. 1971. Algorithm 413-ENTCAF and ENTCRE: Evaluation of normalized Taylor coefficients of an analytic function. Comm. ACM, 14(10), 669675. (Cited on p. 115.)CrossRefGoogle Scholar
Manohar, R., and Stephenson, J. W. 1984. High order difference schemes for linear partial differential equations. SIAM J. Sci. Stat. Comput., 5(1), 6977. (Cited on p. 73.)CrossRefGoogle Scholar
Martensen, E. 1964. Optimale Fehlerschranken für die Qadraturformel von Gregory. ZAMM, 44(4/5), 159168. (Cited on p. 139.)CrossRefGoogle Scholar
Martin, B., and Fornberg, B. 2017a. Seismic modeling with radial basis function-generated finite differences (RBF-FD) – a simplified treatment of interfaces. J. Comput. Phys., 335, 828845. (Cited on p. 110.)CrossRefGoogle Scholar
Martin, B., and Fornberg, B. 2017b. Using radial basis function-generated finite differences (RBF-FD) to solve heat transfer equilibrium problems in domains with interfaces. Eng. Anal. with Boundary Elements, 79, 3848. (Cited on p. 110.)CrossRefGoogle Scholar
März, T., and Macdonald, C. B. 2012. Calculus on surfaces with general closest point functions. SIAM J. Numer. Anal., 50, 33033328. (Cited on p. 111.)CrossRefGoogle Scholar
Mayers, D. F. 1966. Convergence of polynomial interpolation. Chap. 3, pages 15–26 of: Handscomb, D. C. (ed), in Methods of Numerical Approximation, Chapter 3. Oxford: Pergamon Press. (Cited on p. 158.)Google Scholar
McLachlan, R. I., and Quispel, G. R. W. 2002. Splitting methods. Acta Numerica, 11, 341434. (Cited on p. 68.)CrossRefGoogle Scholar
Micchelli, C. A. 1986. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constr. Approx., 2, 1122. (Cited on p. 93.)CrossRefGoogle Scholar
Mickens, R. E. 2002. Nonstandard finite difference schemes for differential equations. J. Difference Eq. and Applic., 8(9), 823847. (Cited on p. 194.)CrossRefGoogle Scholar
Mickens, R. E. 2020. Nonstandard Finite Difference Schemes: Methodology and Applications. World Scientific. (Cited on p. 194.)CrossRefGoogle Scholar
Mills, S. 1985. The independent derivation of Leonhard Euler and Colin MacLaurin of the Euler-MacLaurin summation formula. Arch. Hist. Exa. Sci., 33, 113. (Cited on p. 126.)CrossRefGoogle Scholar
Mishra, P. K., Nath, S. K., Sen, M. K., and Fasshauer, G. E. 2018. Hybrid Gaussiancubic radial basis functions for scattered data interpolation. Comput. Geosci., 22, 12031218. (Cited on p. 95.)CrossRefGoogle Scholar
Mittal, R., and Iaccarino, G. 2005. Immersed boundary methods. Ann. Rev. Fluid Mech., 37, 239261. (Cited on p. 83.)CrossRefGoogle Scholar
Mokhtari, R., and Mostajeran, F. 2020. A high order formula to approximate the Caputo fractional derivative. Comm. Appl. Math. Comp., 2, 129. (Cited on p. 144.)CrossRefGoogle Scholar
Morton, K. W., and Mayers, D. F. 1994. Numerical Solution of Partial Differential Equations. Cambridge University Press. (Cited on pp. 49, 51, and 83.)Google Scholar
Nakatsukasa, Y., Sète, O., and Trefethen, L. N. 2018. The AAA algorithm for rational approximation. SIAM J. Sci. Comput., 40(3), A1494–A1522. (Cited on p. 156.)CrossRefGoogle Scholar
Nehari, Z. 1995 (originally published by Mc-Graw Hill 1952). Conformal Mapping. Dover. (Cited on p. 123.)Google Scholar
Neidinger, R. D. 2010. Introduction to automatic differentiation and MATLAB object-oriented programming. SIAM Rev., 52(3), 545563. (Cited on p. 31.)CrossRefGoogle Scholar
Nielsen, M. E., and Fornberg, B. 2024. High-order numerical method for solving elliptic partial differential equations on unfitted node sets. ArXiv 2407.15825. (Cited on pp. 110 and 208.)Google Scholar
Nowak, R. 2019. Convergence acceleration of alternating series. Num. Algor., 81, 591608. (Cited on p. 138.)CrossRefGoogle Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. 2010. NIST Handbook of Mathematical Functions. Cambridge University Press. (Cited on pp. 33 and 144.)Google Scholar
Ong, B. W., and Spiteri, R. J. 2020. Deferred correction methods for ordinary differential equations. J. Sci. Comput., 83, Article Nr: 60. (Cited on p. 45.)CrossRefGoogle Scholar
Oskooi, A., and Johnson, S. G. 2011. Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media. J. Comput. Phys., 230(7), 23692377. (Cited on p. 84.)CrossRefGoogle Scholar
Ossendrijver, M. 2016. Ancient Babylonian astronomers calculated Jupiter’s position from the area under a time-velocity graph. Science, 351, 482484. (Cited on p. 124.)CrossRefGoogle Scholar
Pareschi, L., and Russo, G. 2005. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput., 25(1), 129155. (Cited on p. 67.)Google Scholar
Pathria, D. 1997. The correct formulation of intermediate boundary conditions for Runge-Kutta time integration of initial boundary value problems. SIAM J. Sci. Comput., 18(5), 12551266. (Cited on p. 50.)CrossRefGoogle Scholar
Pearson, J. 2009. Computation of hypergeometric functions. M.Phil. thesis, University of Oxford. (Cited on p. 33.)Google Scholar
Pearson, J. W., Olver, S., and Porter, M. A. 2017. Numerical methods for the computation of the confluent and Gauss hypergeometric functions. Num. Algor., 74, 821866. (Cited on p. 33.)CrossRefGoogle Scholar
Pereyra, V. 1966. On improving an approximate solution of a functional equation by deferred corrections. Numerische Mathematik, 8, 376391. (Cited on p. 45.)CrossRefGoogle Scholar
Persson, P.-O., and Strang, G. 2004. A simple mesh generator in MATLAB. SIAM Rev., 46(2), 329345. (Cited on pp. 109 and 207.)CrossRefGoogle Scholar
Peskin, C. S. 1977. Numerical analysis of blood flow in the heart. J. Comput. Phys., 25, 220252. (Cited on p. 83.)CrossRefGoogle Scholar
Peskin, C. S. 2002. The immersed boundary method. Acta Numerica, 11, 479517. (Cited on p. 83.)CrossRefGoogle Scholar
Peters, G., and Wilkinson, J. H. 1979. Inverse iteration, ill-conditioned equations and Newton’s method. SIAM Rev., 21(3), 339360. (Cited on p. 82.)CrossRefGoogle Scholar
Petras, A., Ling, L., Piret, C., and Ruth, S. J. 2019. A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces. J. Comput. Phys., 381, 146161. (Cited on p. 111.)CrossRefGoogle Scholar
Pinelis, I. 2018. An alternative to the Euler-Maclaurin summation formula: Approximating sums by integrals only. Numerische Mathematik, 140, 755790. (Cited on p. 131.)CrossRefGoogle Scholar
Piret, C. 2012. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys., 231, 46624675.CrossRefGoogle Scholar
Platte, R. B., Trefethen, L. N., and Kuijlaars, A. B. J. 2011. Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev., 53(2), 308318. (Cited on p. 14.)CrossRefGoogle Scholar
Podlubny, I. 1990. Fractional Differential Equations. Academic Press. (Cited on p. 142.)Google Scholar
Pooladi, F., and Larsson, E. 2024. Stabilized interpolation using radial basis functions augmented with select radial polynomials. J. Comp. Appl. Math., 437, Article Nr: 115482. (Cited on p. 95.)CrossRefGoogle Scholar
Powell, M. J. D. 1981. Approximation Theory and Methods. Cambridge University Press. (Cited on pp. 159 and 164.)CrossRefGoogle Scholar
Powell, M. J. D. 1992. The Theory of Radial Basis Functions Approximation in 1990. Clarendon Press. Chap. 3, Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms, and Radial Basis Functions, ed. Light, Will, pages 105210. (Cited on p. 92.)Google Scholar
Powell, M. J. D. 2005. Five lectures on radial basis functions. Tech. rept. IMM-2005-03. Technical University of Denmark, DTU, Lyngby. (Cited on p. 93.)Google Scholar
Prautzsch, H., Boehm, W., and Paluszny, M. 2002. Bézier and B-Spline Techniques. Springer. (Cited on p. 159.)CrossRefGoogle Scholar
Ralston, A., and Rabinowitz, P. 1978. A First Course in Numerical Analysis. International series in pure and applied mathematics. McGraw-Hill. (Cited on p. 126.)Google Scholar
Ramezani, M., Mokhtari, R., and Haase, G. 2020. Some high order formulae for approximating Caputo fractional derivatives. Appl. Numeric. Math., 153, 300318. (Cited on p. 144.)CrossRefGoogle Scholar
Reddy, S. C., and Trefethen, L. N. 1992. Stability of the method of lines. Numerische Mathematik, 62, 235267. (Cited on p. 50.)CrossRefGoogle Scholar
Reeger, J. A., and Fornberg, B. 2018. Numerical quadrature over smooth surfaces with boundaries. J. Comput. Phys., 355, 176190. (Cited on p. 200.)CrossRefGoogle Scholar
Renou, M-O., Acin, A., and Navascués, M. 2023. Quantum physics falls apart without imaginary numbers. Sci. Am., 328(4), 6267. (Cited on p. 112.)Google Scholar
Richardson, L. F. 1911. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to a masonry dam. Philos. Trans. R. Soc. London, 210, 307357. (Cited on p. 1.)Google Scholar
Rosenbrock, H. H. 1960. Some general implicit processes for the numerical solution of differential equations. Comput. J., 5(4), 329330. (Cited on p. 67.)CrossRefGoogle Scholar
Runge, C. 1901. Über empirische Functionen und die Interpolation zwischen äquidistanten Ordinaten. Z. Math. Phys., 46, 224243. (Cited on p. 13.)Google Scholar
Ruprecht, D. 2018. Wave propagation characteristics of Parareal. Comput. Vis. Sci., 19(1–2), 117. (Cited on p. 200.)CrossRefGoogle Scholar
Rutishauser, H. 1976. Vorlesungen über numerische Mathematik. Vol. 1., English translation, Lectures on Numerical Mathematics, Gautschi, W., ed., Birkhäuser, Boston, 1990: Birkhäuser. (Cited on p. 156.)Google Scholar
Ruuth, S. J., and Merriman, B. 2008. A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys., 227(3), 19431961. (Cited on p. 111.)CrossRefGoogle Scholar
Sagaut, P., Suman, V. K., Sundaram, P., Rajpoot, M. K., Bhumkar, Y. G., Sengupta, S., Sengupta, A., and Sengupta, T. K. 2023. Global spectral analysis: Review of numerical methods. Comp. Fluids, 261, Article Nr: 105915. (Cited on p. 195.)CrossRefGoogle Scholar
Samarin, E. N., and Chudov, L. A. 1963. On the stability of the numerical integration of systems of ordinary differential equations arising in the use of the straight line method. USSR Computational Math. and Math. Physics, 3(6), 15371543. (Cited on p. 50.)Google Scholar
Samko, S. G., Kilbas, A. A., and Marichev, O. I. 1993. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers. (Cited on p. 142.)Google Scholar
Santos, L. G. C., Manzanares-Filho, N., Menon, G. J., and Abreu, E. 2018. Comparing RBF-FD approximations based on stabilized Gaussians and on polyharmonic splines with polynomials. Int. J. Numer. Methods Eng., 115, 462500. (Cited on p. 104.)CrossRefGoogle Scholar
Schaback, R. 1995. Error estimates and condition numbers for radial basis function interpolants. Adv. Comput. Math., 3, 251264. (Cited on p. 94.)CrossRefGoogle Scholar
Schiesser, W. E. 1991. The Numerical Method of Lines. Academic Press. (Cited on p. 50.)Google Scholar
Schoenberg, I. J. 1938. Metric spaces and completely monotone functions. Ann. Math., 39, 811841. (Cited on p. 93.)CrossRefGoogle Scholar
Schoenberg, I. J. 1946. Contributions to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math., 4, 45–99 and 112141. (Cited on p. 159.)CrossRefGoogle Scholar
Schumaker, L. L. 1981. Spline Functions: Basic Theory. John Wiley & Sons. (Cited on p. 159.)Google Scholar
Scott, J., and Tůma, M. 2022. Solving large linear least squares problems with linear equality constraints. BIT, 62, 17651787. (Cited on p. 183.)CrossRefGoogle Scholar
Shankar, V., and Fogelson, A. L. 2018. Hyperviscosity-based stabilization for radial basis function-finite difference (RBF-FD) discretizations of advection-diffusion equations. J. Comput. Phys., 372, 616639. (Cited on p. 106.)CrossRefGoogle ScholarPubMed
Shankar, V., Wright, G. B., and Fogelson, A. L. 2021. An efficient high-order meshless method for advection-diffusion equations on time-varying irregular domains. J. Comput. Phys., 445, Article Nr: 110633. (Cited on p. 110.)CrossRefGoogle ScholarPubMed
Shapira, Y. 2008. Matrix-based Multugrid: Theory and Applications. Springer. (Cited on p. 83.)CrossRefGoogle Scholar
Sidi, A. 2003. Practical Extrapolation Methods. Cambridge Monographs on Applied and Computational Mathematics, vol. 10. Cambridge University Press. (Cited on pp. 138 and 185.)CrossRefGoogle Scholar
Slak, J., and Kosec, G. 2019. On generation of node distributions for meshless PDE discretizations. SIAM J. Sci. Comput., 41(5), A3202–A3229. (Cited on p. 207.)CrossRefGoogle Scholar
Smith, G. D. 1965. Numerical Solution of Partial Differential Equations. Oxford Mathematical Handbooks. Oxford University Press. (Cited on p. 111.)Google Scholar
Smolyak, S. A. 1963. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR, 4, 240243. (Cited on p. 205.)Google Scholar
Southwell, R. V. 1945. On relaxation methods: A mathematics for engineering science. Proc. R.Soc. London, Ser. A, 184(998), 253288. (Cited on p. 205.)Google Scholar
Spotz, W. F., and Carey, G. F. 1995. High-order compact scheme for the stream-function vorticity equations. Int. J. Numer. Meth. Eng., 38, 34973512. (Cited on p. 71.)CrossRefGoogle Scholar
Spotz, W. F., and Carey, G. F. 2001. Extension of high-order compact schemes to time-dependent problems. Numer. Meth. for Part. Diff. Eq., 17(6), 657672. (Cited on p. 71.)CrossRefGoogle Scholar
Squire, W., and Trapp, G. 1998. Using complex variables to estimate derivatives of real functions. SIAM Rev., 40, 110112. (Cited on p. 114.)CrossRefGoogle Scholar
Stahl, H. 1997. The convergence of Padé approximants to functions with branch points. J. Approx. The., 91(2), 139204. (Cited on p. 191.)CrossRefGoogle Scholar
Strang, G. 1968. On construction and comparison of difference schemes. SIAM J. Numer. Anal., 5, 506516. (Cited on p. 68.)CrossRefGoogle Scholar
Strikwerda, J. C. 2004. Finite Difference Schemes and Partial Differential Equations. 2nd ed. SIAM. (Cited on p. 49.)Google Scholar
Stüben, K. 2002. A review of algebraic multigrid. J. Comp. Appl. Math., 128(1–2), 281309. (Cited on p. 83.)CrossRefGoogle Scholar
Süli, E., and Mayers, D. 2003. An Introduction to Numerical Analysis. Cambridge University Press. (Cited on p. 42.)CrossRefGoogle Scholar
Sutmann, G., and Steffen, B. 2006. High-order solvers for the three-dimensional Poisson equation. J. Comp. Appl. Math., 187, 142170. (Cited on p. 74.)CrossRefGoogle Scholar
Svärd, M., and Nordström, J. 2014. Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys., 268, 1738. (Cited on p. 57.)CrossRefGoogle Scholar
Taflove, A., Hagness, S. C., and Piket-May, M. 2005. Computational electromagnetics: The finite-difference time-domain method. ch 9 Pages 629–670 of: Chen, W.-K. (ed.), The Electrical Engineering Handbook. Elsevier. (Cited on p. 61.)Google Scholar
Taha, T. R., and Ablowitz, M. J. 1984. Analytical and numerical aspects of certain nonlinear evolution equations. II. Nonlinear Schrödinger equation. J. Comput. Phys., 55, 203230. (Cited on p. 68.)CrossRefGoogle Scholar
Tarwater, A. E. 1985. Parameter study of Hardy’s multiquadric method for scattered data interpolation. Technical Report UCRL-54670. Lawrence Livermore National Laboratory, Livermore, CA. (Cited on p. 93.)Google Scholar
Thompson, J. F., Soni, B. K., and Weatherill, N. P. (eds.). 1998. Handbook of Grid Generation. CRC Press. (Cited on p. 123.)CrossRefGoogle Scholar
Tolstykh, A. I. 2000. Using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations. Pages 4606–4624 of: Proceedings of the 16th IMACS World Congress, vol. 228. Conference held in Lausanne 2000, Proceedings Editors: M. Deville and R. Owens. (Cited on p. 101.)Google Scholar
Toro, E. F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer. (Cited on p. 71.)CrossRefGoogle Scholar
Trefethen, L. N. 2000. Spectral Methods in MATLAB. SIAM. (Cited on pp. 13 and 17.)CrossRefGoogle Scholar
Trefethen, L. N. 2013, extended edition 2019. Approximation Theory and Approximation Practice. SIAM. (Cited on pp. 6, 13, 17, and 158.)Google Scholar
Trefethen, L. N. 2020. Quantifying the ill-conditioning of analytic continuation. BIT, 60, 901915. (Cited on p. 190.)CrossRefGoogle Scholar
Trefethen, L. N. 2023. Numerical analytic continuation. JPN J. Ind. Appl. Math., 40, 15871636. (Cited on pp. 35 and 190.)CrossRefGoogle Scholar
Trefethen, L. N., and Weideman, J. A. C. 2014. The exponentially convergent trapezoidal rule. SIAM Rev., 56, 384458. (Cited on p. 126.)CrossRefGoogle Scholar
Trefethen, L. N., Birkisson, Á., and Driscoll, T. A. 2017. Exploring ODEs. SIAM. (Cited on p. 26.)CrossRefGoogle Scholar
Turnbull, H. W. (ed.). 1939. James Gregory. Tricentenary Memorial Volume. G. Bell & Sons Ltd. (Cited on p. 128.)Google Scholar
Valério, D., Ortigueira, M. D., and Lopes, A. M. 2022. How many fractional derivatives are there? Mathematics, 10, Article Nr: 737. (Cited on p. 141.)Google Scholar
van der Sande, K., and Fornberg, B. 2021. Fast variable density 3-D node generation. SIAM J. Sci. Comput., 43(1), A242–A257. (Cited on pp. 207 and 210.)CrossRefGoogle Scholar
Verwer, J. G. 2007. On time staggering for wave equations. J. Sci. Comput., 33, 139154. (Cited on p. 58.)CrossRefGoogle Scholar
Vichnevetsky, R. 1987. Wave-propagation analysis of difference-schemes for hyperbolic equations – A review. Int. J. for Num. Meth. Fluids, 7(5), 409452. (Cited on p. 195.)CrossRefGoogle Scholar
Wegert, E. 2012. Visual Complex Functions. Birkhäuser–Springer. (Cited on p. 112.)CrossRefGoogle Scholar
Wegert, E. 2024. About the cover: Complex finite differences of higher order. Comp. Meth. Funct. Ther., 24(1), 16. (Cited on pp. 120 and 121.)CrossRefGoogle Scholar
Weideman, J. A. C. 2002. Numerical integration of periodic functions: A few examples. Amer. Math. Monthly, 109(1), 2136. (Cited on p. 126.)CrossRefGoogle Scholar
Wendland, H. 2005. Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press. (Cited on p. 89.)Google Scholar
Wendland, H., and Künemund, J. 2020. Solving partial differential equations on (evolving) surfaces with radial basis functions. Adv. Comput. Math., 46, Article Nr: 64. (Cited on p. 111.)CrossRefGoogle Scholar
Wilbraham, H. 1848. On a certain periodic function. Cambridge & Dublin Math. J., 3, 198201. (Cited on p. 22.)Google Scholar
Willers, I. M. 1974. A new integration algorithm for ordinary differential equations based on continued fraction approximations. Comm. ACM, 17, 504508. (Cited on p. 30.)CrossRefGoogle Scholar
Winograd, S. 1978. On computing the discrete Fourier transform. Math. Comput., 32, 175199. (Cited on p. 179.)CrossRefGoogle Scholar
Womersley, R. 2020. Interpolation and cubature on the sphere. https://web.maths.unsw.edu.au/∼rsw/Sphere/ (Cited on pp. 105 and 107.)Google Scholar
Wright, G. B., and Fornberg, B. 2006. Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys., 212, 99123. (Cited on p. 109.)CrossRefGoogle Scholar
Wright, G. B., and Fornberg, B. 2017. Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys., 331, 137156. (Cited on pp. 95 and 101.)CrossRefGoogle Scholar
Wright, G. B., Flyer, N., and Yuen, D. A. 2010. A hybrid radial basis function-pseudospectral method for thermal convection in a 3D shperical shell. Geophys., Geochem., Geosyst., 11, Q07003. (Cited on pp. 97 and 98.)CrossRefGoogle Scholar
Wright, G. B., Jones, A., and Shankar, V. 2023. MGM: A meshfree geometric multilevel method for systems arising from elliptic equations on point cloud surfaces. SIAM J. Sci. Comput., 45(2), A312–A337. (Cited on pp. 110 and 111.)CrossRefGoogle Scholar
Yang, J. 2010. Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM. (Cited on p. 66.)CrossRefGoogle Scholar
Yee, K. S. 1966. Numerical solution of initial value problems involving Maxwells equations in isotropic media. IEEE Trans. Ant. Propog., 14, 302307. (Cited on pp. 58 and 61.)Google Scholar
Yoshida, H. 1990. Construction of higher order symplectic integrators. Phys. Lett. A, 150, 262268. (Cited on p. 68.)CrossRefGoogle Scholar
Yu, P. X., and Tian, Z. F. 2019. A high-order compact scheme for the pure streamfunction (vector potential) formulation of the 3D steady incompressible Navier-Stokes equations. J. Comput. Phys., 382, 6585. (Cited on p. 71.)CrossRefGoogle Scholar
Yuksel, C. 2015. Sample elimination for generating Poisson disk sample sets. Comp. Graph. Forum, 34, 2535. (Cited on p. 210.)CrossRefGoogle Scholar
Zabusky, N. J., and Kruskal, M. D. 1965. Interactions of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15, 240243. (Cited on p. 65.)CrossRefGoogle Scholar
Zamolo, R., Nobile, E., and ˘Sarler, B. 2019. Novel multilevel techniques for convergence acceleration in the solution of systems of equations arising from RBF-FD meshless disretizations. J. Comput. Phys., 392, 311334. (Cited on p. 111.)CrossRefGoogle Scholar
Zayernouri, M., Wang, L. L., Shen, J., and Karniadakis, G. E. 2024. Spectral and Spectral Element Methods for Fractional Ordinary and Partial Differential Equations. Cambridge Monographs on Applied and Computational Mathematics, vol. 41. Cambridge University Press. (Cited on p. 151.)CrossRefGoogle Scholar
Zheng, Z., and Li, X. 2022. Theoretical analysis of the generalized finite difference method. Comp. Math. Applic., 120, 114. (Cited on p. 85.)CrossRefGoogle Scholar
Zhuang, Q., Heryudono, A., Zeng, F., and Zhang, Z. 2024. Collocation methods for integral fractional Laplacian and fractional PDEs based on radial basis functions. Applied Mathematics and Computation, 469, Article Nr: 128548. (Cited on pp. 151 and 154.)CrossRefGoogle Scholar
Zingg, D. W. 2000. Comparison of high-accuracy finite-difference methods for linear wave propagation. SIAM J. Sci. Comput., 22(2), 476502. (Cited on p. 195.)CrossRefGoogle Scholar
Zingg, D. W., and Lomax, H. 1993. Finite-difference schemes on regular triangular grids. J. Comput. Phys., 108(2), 306313. (Cited on p. 205.)CrossRefGoogle Scholar
Zlatev, Z., Dimov, I., Faragó, I., and Havasi, Á. 2018. Richardson Extrapolation: Practical Aspects and Applications. De Gruyter Series in Applied and Numerical Mathematics, vol. 2. De Gruyter. (Cited on p. 186.)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Bengt Fornberg, University of Colorado Boulder
  • Book: High-Accuracy Finite Difference Methods
  • Online publication: 16 May 2025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Bengt Fornberg, University of Colorado Boulder
  • Book: High-Accuracy Finite Difference Methods
  • Online publication: 16 May 2025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Bengt Fornberg, University of Colorado Boulder
  • Book: High-Accuracy Finite Difference Methods
  • Online publication: 16 May 2025
Available formats
×