Published online by Cambridge University Press: 08 January 2010
I met this guy
and he looked like he might have been a hat-check clerk
at an ice rink
which in fact
he turned out to be
Laurie Anderson (1982)Trees appear everywhere in higher-dimensional algebra. In this text they were defined in a purely abstract way (2.3.3): tr is the free plain operad on the terminal object of Setℕ, and an n-leafed tree is an element of tr(n). But for the reasons laid out at the beginning of Section 7.3, I give here a ‘concrete’, graph-theoretic, definition of (finite, rooted, planar) tree and sketch a proof that it is equivalent to the abstract definition.
The equivalence
The main subtlety is that the trees we use are not quite finite graphs in the usual sense: some of the edges have a vertex at only one of their ends. (Recall from 2.3.3 that in a tree, an edge with a free end is not the same thing as an edge ending in a vertex.) This suggests the following definitions. Definition E.1.1 A (planar) input-output graph (Fig. E-A(a)) consists of
• a finite set V (the vertices)
[…]
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.