Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-08T09:18:30.653Z Has data issue: false hasContentIssue false

4 - Measuring hydroclimate terrestrial components

Published online by Cambridge University Press:  06 July 2010

Marlyn L. Shelton
Affiliation:
University of California, Davis
Get access

Summary

A terrestrial focus

Climate of the second kind and the terrestrial branch of the hydrologic cycle embrace the suite of natural processes at or near the land surface that account for the conversion of precipitation into streamflow. The primary variables involved with these processes are fluxes represented by precipitation, evaporation and evapotranspiration, and runoff. These fluxes of energy and mass related to land surface processes are dominantly oriented upward or downward relative to the land surface, and they are aided by energy and mass storages and sinks occurring at or near the land surface. Wind and soil moisture are additional variables that augment or dampen the rate of energy or mass exchange between the land surface and the atmosphere. Wind is a horizontal flow that is a fundamental factor influencing evaporation and evapotranspiration. Soils have non-linear flow properties that transform sudden changes in land surface conditions into gradual changes in subsurface water movement. In addition, soil moisture storage provides water for plant transpiration during periods between precipitation events.

Efforts to generalize the characteristics of the energy and mass fluxes defining climate of the second kind and the terrestrial branch of the hydrologic cycle are complicated by the complexity of the Earth's land surface. The land surface supports an array of heterogeneities and discontinuities related to forcing inputs, state conditions, and land surface properties that influence moisture processing. Heterogeneity of the land surface is obvious in soils, vegetation, and topographic differences at various spatial scales (Becker, 1995).

Type
Chapter
Information
Hydroclimatology
Perspectives and Applications
, pp. 74 - 125
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×