Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-02T22:36:37.689Z Has data issue: false hasContentIssue false

7 - State–Space Models

Published online by Cambridge University Press:  02 September 2009

Jer-Nan Juang
Affiliation:
NASA-Langley Research Center
Minh Q. Phan
Affiliation:
Dartmouth College, New Hampshire
Get access

Summary

Introduction

This chapter shows the reader how to rewrite the second-order equations of motion for a general multiple-degree-of-freedom system into the form of a first-order matrix differential equation. What we have learned from Chap. 1 about the mathematics of a first-order matrix differential equation then applies. The first-order matrix differential equation is known as the state–space model, which is a fundamental equation on which modern control theory is based.

In this chapter, we will also study a sampled-data (or discrete-time) representation of the continuous-time state–space model. Assuming a constant input at each sampling interval, it is possible to represent the continuous-time state–space model that is in the form of a first-order matrix differential equation by a discrete-time first-order matrix difference equation. At the sampling points, the corresponding discrete-time state–space model describes exactly the continuous-system with a constant input at each sampling interval without any kind of approximation (Ref. [1–3]). The corresponding discrete-time model is also of the first order. As a result, control methods that are originally developed in the continuous-time domain can be converted almost trivially to the discrete-time domain for digital control implementation (Ref. [2]). Digital control is flexible in that changing a control strategy amounts to writing a different program (software) rather than constructing a different analog control circuitry (hardware). For the same reason, different signal processing techniques such as filtering, identification (Ref. [1]), etc., can be incorporated much more conveniently into the discrete-time digital format.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • State–Space Models
  • Jer-Nan Juang, NASA-Langley Research Center, Minh Q. Phan, Dartmouth College, New Hampshire
  • Book: Identification and Control of Mechanical Systems
  • Online publication: 02 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547119.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • State–Space Models
  • Jer-Nan Juang, NASA-Langley Research Center, Minh Q. Phan, Dartmouth College, New Hampshire
  • Book: Identification and Control of Mechanical Systems
  • Online publication: 02 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547119.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • State–Space Models
  • Jer-Nan Juang, NASA-Langley Research Center, Minh Q. Phan, Dartmouth College, New Hampshire
  • Book: Identification and Control of Mechanical Systems
  • Online publication: 02 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547119.008
Available formats
×