Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T21:57:53.038Z Has data issue: false hasContentIssue false

16 - Complex Engineering Turbulent Flows

from SECTION D - FRONTIER FLOWS

Published online by Cambridge University Press:  08 January 2010

Fernando F. Grinstein
Affiliation:
Los Alamos National Laboratory
Len G. Margolin
Affiliation:
Los Alamos National Laboratory
William J. Rider
Affiliation:
Los Alamos National Laboratory
Get access

Summary

Introduction

A grand challenge for computational fluid dynamics (CFD) is the modeling and simulation of the time evolution of the turbulent flow in and around different engineering applications. Examples of such applications include external flows around cars, trains, ships, buildings, and aircrafts; internal flows in buildings, electronic devices, mixers, food manufacturing equipment, engines, furnaces, and boilers; and supersonic flows around aircrafts, missiles, and in aerospace engine applications such as scramjets and rocket motors. For such flows it is unlikely that we will ever have a really deterministic predictive framework based on CFD, because of the inherent difficulty in modeling and validating all the relevant physical subprocesses, and in acquiring all the necessary and relevant boundary condition information. On the other hand, these cases are representative of fundamental ones for which whole-domain scalable laboratory studies are extremely difficult, and for which it is crucial to develop predictability as well as establish effective approaches to the postprocessing of the simulation database.

The modeling challenge is to develop computational models that, although not explicitly incorporating all eddy scales of the flow, give accurate and reliable flowfield results for at least the large energy-containing scales of motion. In general terms this implies that the governing Navier–Stokes equations (NSE) must be truncated in such a way that the resulting energy spectra is consistent with the |k|-5/3 law of Kolmogorov, with a smooth transition at the high-wave-number cutoff end. Moreover, the computational models must be designed so as to minimize the contamination of the resolved part of the energy spectrum and to modify the dissipation rate in flow regions where viscous effects are more pronounced, such as the region close to walls.

Type
Chapter
Information
Implicit Large Eddy Simulation
Computing Turbulent Fluid Dynamics
, pp. 470 - 501
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×