Published online by Cambridge University Press: 06 July 2010
Convex sets and convex functions
Many important inequalities depend upon convexity. In this chapter, we shall establish Jensen's inequality, the most fundamental of these inequalities, in various forms.
A subset C of a real or complex vector space E is convex if whenever x and y are in C and 0 ≤ θ ≤ 1 then (1 − θ)x + θy ∈ C. This says that the real line segment [x, y] is contained in C. Convexity is a real property: in the complex case, we are restricting attention to the underlying real space. Convexity is an affine property, but we shall restrict our attention to vector spaces rather than to affine spaces.
Proposition 4.1.1A subset C of a vector space E is convex if and only if whenever x 1, …, xn ∈ C and p 1, …, pn are positive numbers with p 1 + … + pn = 1 then p 1 x 1 + … + pnxn ∈ C.
Proof The condition is certainly sufficient. We prove necessity by induction on n. The result is trivially true when n = 1, and is true for n = 2, as this reduces to the definition of convexity. Suppose that the result is true for n − 1, and that x 1, …, xn and p 1, …, pn are as above.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.