Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-30T02:40:00.082Z Has data issue: false hasContentIssue false

11 - The Evolution of Pathogen Virulence in Response to Animal and Public Health Interventions

Published online by Cambridge University Press:  10 August 2009

Andrew F. Read
Affiliation:
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
Sylvain Gandon
Affiliation:
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
Sean Nee
Affiliation:
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
Margaret J. Mackinnon
Affiliation:
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
Krishna R. Dronamraju
Affiliation:
Foundation for Genetic Research, Houston, Texas
Get access

Summary

INTRODUCTION

Pathogen evolution poses the critical challenge for infectious disease management in the twenty-first century. As is already painfully obvious in many parts of the world, the spread of drug-resistant and vaccine-escape (epitope) mutants can impair and even debilitate public and animal health programs. But there may also be another way in which pathogen evolution can erode the effectiveness of medical and veterinary interventions. Virulence- and transmission-related traits are intimately linked to pathogen fitness and are almost always genetically variable in pathogen populations. They can therefore evolve. Moreover, virulence and infectiousness are the target of medical and veterinary interventions. Here, we focus on vaccination and ask whether large-scale immunization programs might impose selection that results in the evolution of more-virulent pathogens.

The word virulence is used in a variety of ways in different disciplines. We take a parasite-centric view as follows. We use “disease severity” (morbidity and/or mortality) to mean the harm to the host following infection. Disease severity is thus a phenotype measured at the whole-organism (host) level that is determined by host genes, parasite genes, environmental effects, and the interaction between those factors. One component of this is virulence, a phenotypic trait of the pathogen whose expression depends on the host. Thus, virulence is the component of disease severity that is due to pathogen genes, and it can be measured only on a given host. We assume no specificity in the interaction between host and pathogen (more-virulent strains are always more virulent, whatever host they infect).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antia, R., Levin, B., and May, R. M.. 1994. Within-host population dynamics and the evolution and maintenance of microparasite virulence. American Naturalist 144: 457–72CrossRefGoogle Scholar
Ariey, F., Hommel, D., Scanf, C., Duchemin, J. B., Peneau, C., Hulin, A., Sarthou, J. L., Reynes, J. M., Fandeur, T., and Mercereau-Puijalon, O.. 2001. Association of severe malaria with a specific Plasmodium falciparum genotype in French Guiana. Journal of Infectious Diseases 184: 237–41CrossRefGoogle ScholarPubMed
Best, S. M., and Kerr, P. J.. 2000. Coevolution of host and virus: the pathogenesis of virulent and attenuated strains of myxoma virus in resistant and susceptible European rabbits. Virology 267: 36–48CrossRefGoogle ScholarPubMed
Biggs, P. M. 2001. The history and biology of Marek's disease virus. Current Topics in Microbiology and Immunology 255: 1–24Google ScholarPubMed
Bojang, K. A., Milligan, P. J. M., Pinder, M., Vigneron, L., Alloueche, A., Kester, K. E., Ballou, W. R., Conway, D. J., Reece, W. H. H., Gothard, P., Yamuah, L., Delchambre, M., Voss, G., Greenwood, B. M., Hill, A., McAdam, K., Tornieporth, N., Cohen, J. D., and Doherty, T.. 2001. Efficacy of RTS, S/ASO2 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet 358: 1927–34CrossRefGoogle Scholar
Bruce-Chwatt, L. 1963. A longtitudinal survey of natural infection in a group of West African adults. West African Medical Journal 12: 199–206Google Scholar
Buckling, A., and Read, A. F.. 2001. The effect of partial host immunity on the transmission of malaria parasites. Proceedings of the Royal Society of London, Series B 268: 2325–30CrossRefGoogle ScholarPubMed
Buckling, A. G. J., Taylor, L. H., Carlton, J. M. R., and Read, A. F.. 1997. Adaptive changes in Plasmodium transmission strategies following chloroquine chemotherapy. Proceedings of the Royal Society of London, Series B 264: 553–9CrossRefGoogle ScholarPubMed
Bull, J. J. 1994. Virulence. Evolution 48: 1423–37Google ScholarPubMed
Bull, J. J., and Molineux, I. J.. 1992. Molecular genetics of adaptation in an experimental model of cooperation. Evolution 46: 882–95CrossRefGoogle Scholar
Bull, J. J., Molineux, I. J., and Rice, W. R.. 1991. Selection of benevolence in a host-parasite system. Evolution 45: 875–82CrossRefGoogle Scholar
Carlson, J., Helmby, H., Hill, A. V. S., Brewster, D., Greenwood, B. M., and Wahlgren, M.. 1990. Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet 336: 1457–60CrossRefGoogle ScholarPubMed
Chotivanich, K., Udomsangpetch, R., Simpson, J. A., Newton, P., Pukrittayakamee, S., Looareesuwan, S., and White, N. J.. 2000. Parasite multiplication potential and the severity of falciparum malaria. Journal of Infectious Diseases 181: 1206–9CrossRefGoogle ScholarPubMed
Covell, G., and Nicol, W. D.. 1951. Clinical, chemotherapeutic and immunological studies on induced malaria. British Medical Bulletin 8: 51–8CrossRefGoogle ScholarPubMed
Cox, F. E. G. 1988. Major animal models: rodent. In Malaria: Principles and Practice of Malariology, W. H. Wernsdorfer and I. McGregor, Eds., pp. 1503–43. Churchill Livingston, Edinburgh
Day, T. 2001. Parasite transmission modes and the evolution of virulence. Evolution 55: 2389–400CrossRefGoogle ScholarPubMed
Day, T. 2003. Personal Commumication. Virulence evolution and the timing of disease life-history events. Trends in Ecology & Evolution 18: 113–118CrossRefGoogle Scholar
Day, K. P., Karamalis, F., Thompson, J., Barnes, D. A., Peterson, C., Brown, H., Brown, G. V., and Kemp, D. J.. 1993. Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. Proceedings of the National Academy of Sciences USA 90: 8292–6CrossRefGoogle ScholarPubMed
Day, K. P., Koella, J. C., Nee, S., Gupta, S., and Read, A. F.. 1992. Population genetics and dynamics of Plasmodium falciparum: an ecological view. Parasitology 104: S35–52CrossRefGoogle Scholar
Roode, J. C., Read, A. F., Chan, B. H. K., and Mackinnon, M. J., 2003. Infection dynamics and virulence of three-clone infections with the rodent malaria parasite Plasmodium chabaudi. Parasitology 127: 411–418CrossRefGoogle Scholar
Dieckmann, U., J. A. J. Metz, M. W. Sabelis, and K. Sigmund, Eds. 2002. Virulence Management: The Adaptive Dynamics of Pathogen-Host Interactions. Cambridge University Press, Cambridge, UK
Ebert, D. 1998. Experimental evolution of parasites. Science 282: 1432–5CrossRefGoogle ScholarPubMed
Ebert, D. 1999. The evolution and expression of parasite virulence. In Evolution in Health and Disease, S. C. Stearns, Ed., pp. 161–72. Oxford University Press, Oxford
Ebert, D., and Bull, J. J.. 2003. Challenging the tradeoff model for the evolution of virulence: is virulence management feasible? Trends in Microbiology 11: 15–20CrossRefGoogle Scholar
Ebert, D., and Mangin, K. L.. 1997. The influence of host demography on the evolution of virulence of a microsporidian gut parasite. Evolution 51: 1828–37CrossRefGoogle ScholarPubMed
Engelbrecht, F., Felger, I., Genton, B., Alpers, M., and Beck, H.-P.. 1995. Plasmodium falciparum: malaria morbidity is associated with specific Merozoite Surface Antigen 2 genotypes. Experimental Parasitology 81: 90–6CrossRefGoogle ScholarPubMed
Ewald, P. W. 1994. Evolution of Infectious Diseases. Oxford University Press, Oxford
Ewald, P. W. 1996. Vaccines as evolutionary tools: the virulence-antigen strategy. In Concepts in Vaccine Development, S. H. E. Kaufmann, Ed., pp. 1–25. de Gruyter & Co., Berlin
Ewald, P. W. 2002. Virulence management in humans. In Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, U. Dieckmann, J. A. J. Metz, M. W. Sabelis, and K. Sigmund, Eds., pp. 399–409. Cambridge University Press, Cambridge, UK
Fenner, F., and B. Fantini. 1999. Biological Control of Vertebrate Pests. CABI Publishing, Wallingford, UK
Ferguson, H. M., M. J. Mackinnon, B. H. K. Chan, and A. F. Read, in press. Mosquito mortality and the evolution of malaria virulence. Evolution
Ferguson, H. M., and Read, A.. 2002a. Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proceedings of the Royal Society of London, Series B 269: 1217–24CrossRefGoogle Scholar
Ferguson, H. M., and Read, A.. 2002b. Why is the impact of malaria parasites on mosquito survival still unresolved? Trends in Parasitology 18: 256–61CrossRefGoogle Scholar
Frank, S. A. 1996. Models of parasite virulence. Quarterly Review of Biology 71: 37–78CrossRefGoogle ScholarPubMed
Gandon, S., Mackinnon, M. J., Nee, S., and Read, A. F.. 2001. Imperfect vaccines and the evolution of pathogen virulence. Nature 414: 751–6CrossRefGoogle ScholarPubMed
Gandon, S., Mackinnon, M. J., Nee, S., and Read, A. F.. 2002. Antitoxin vaccines and pathogen virulence. Nature 417: 610Google Scholar
Gandon, S., Mackinnon, M. J., Nee, S., and Read, A. F., 2003. Imperfect vaccination: some epidemiological and evolutionary consequences. Proceedings of the Royal Society of London, Series B 270: 1129–1136CrossRefGoogle ScholarPubMed
Gandon, S., and Michalakis, Y.. 2000. Evolution of parasite virulence against qualitative or quantitative host resistance. Proceedings of the Royal Society of London, Series B 267: 985–90CrossRefGoogle ScholarPubMed
Ganusov, V., Bergstrom, C., and Antia, R.. 2002. Within-host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution 56: 213–23CrossRefGoogle Scholar
Genton, B., Betuela, I., Felger, I., Al-Yaman, F., Anders, R. F., Saul, A., Rare, L., Baisor, M., Lorry, K., Brown, G. V., Pye, D., Irving, D. O., Smith, T. A., Beck, H. P., and Alpers, M. P.. 2002. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1–2b trial in Papua New Guinea. Journal of Infectious Diseases 185: 820–70CrossRefGoogle Scholar
Gravenor, M. B., McLean, A. R., and Kwiatkowski, D.. 1995. The regulation of malaria parasitaemia: parameter estimates for a population model. Parasitology 110: 115–22CrossRefGoogle ScholarPubMed
Greenwood, B., and Mutabingwa, T.. 2002. Malaria in 2002. Nature 415: 670–1CrossRefGoogle ScholarPubMed
Hastings, I. M., and Alessandro, U. D'. 2000. Modelling a predictable disaster: the rise and spread of drug resistant malaria. Parasitology Today 16: 340–7CrossRefGoogle Scholar
Hayward, R. E., Tiwari, B., Piper, K. P., Baruch, D. I., and Day, K. P.. 1999. Virulence and transmission success of the malaria parasites Plasmodium falciparum. Proceedings of the National Academy of Sciences USA 96: 4563–8CrossRefGoogle Scholar
Herre, E. A. 1993. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259: 1442–5CrossRefGoogle ScholarPubMed
James, S. P., Nicol, W. D., and Shute, P. G.. 1932. A study of induced malignant tertian malaria. Proceedings of the Royal Society of Medicine 25: 1153–79Google ScholarPubMed
James, S. P., Nicol, W. D., and Shute, P. G.. 1936. Clinical and parasitological observations of induced malaria. Proceedings of the Royal Society of Medicine 29: 879–93Google ScholarPubMed
Kew, O., Morris-Glasgow, V., Lanaverde, M., and 21 colleagues. 2002. Outbreak of poliomyelitis in Hispaniola associated with circulating Type 1 vaccine-derived poliovirus. Science 296: 356–9CrossRefGoogle ScholarPubMed
Kreager, K. S. 1998. Chicken industry strategies for control of tumour virus infections. Poultry Science 77: 1213–7CrossRefGoogle ScholarPubMed
Kun, J. F. J., Schmidt-Ott, R. J., Lehman, L. G., Lell, B., Luckner, D., Greve, B., Matousek, P., and Kremsner, P. G.. 1998. Merozoite surface antigen 1 and 2 genotypes and rosetting of Plasmodium falciparum in severe and mild malaria in Lambaréné, Gabon. Transactions of the Royal Society of Tropical Medicine and Hygiene 92: 110–14CrossRefGoogle ScholarPubMed
Levin, B. R., and Bull, J. J.. 1994. Short-sighted evolution and the virulence of pathogenic microbes. Trends in Microbiology 2: 73–7CrossRefGoogle Scholar
Lipsitch, M., and Moxon, R. E.. 1997. Virulence and transmissibility of pathogens: what is the relationship? Trends in Microbiology 6: 31–6CrossRefGoogle Scholar
Little, T. J. 2002. The evolutionary significance of parasitism: do parasite-driven genetic dynamics occur ex silico. Journal of Evolutionary Biology 15: 1–9CrossRefGoogle Scholar
Lively, C. M., and V. Apanius. 1995. Genetic diversity in host-parasite interactions. In Ecology of Infectious Diseases in Natural Populations, B. T. Grenfell and A. P. Dobson, Eds., pp. 421–49. Cambridge University Press, Cambridge UK
Mackinnon, M. J., Gaffney, D. J., and Read, A. F.. 2002. Virulence of malaria parasites: host genotype by parasite genotype interactions. Infection, Genetics and Evolution 1: 287–96CrossRefGoogle ScholarPubMed
Mackinnon, M. J., Gunawardena, D. M., Rajakaruna, J., Weerasingha, S., Mendis, K. N., and Carter, R.. 2000. Quantifying genetic and nongenetic contributions to malarial infection in a Sri Lankan population. Proceedings of the National Academy of Sciences USA 97: 12661–6CrossRefGoogle Scholar
Mackinnon, M. J., and Read, A. F.. 1999a. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution 53: 689–703CrossRefGoogle Scholar
Mackinnon, M. J., and Read, A. F.. 1999b. Selection for high and low virulence in the malaria parasite Plasmodium chabaudi. Proceedings of the Royal Society of London, Series B 266: 741–8CrossRefGoogle Scholar
Mackinnon, M. J., and Read, A. F.. 2003. The effects of host immunity on virulence-transmissibility relationships in the rodent malaria parasite Plasmodium chabaudi. Parasitology 126: 1–10CrossRefGoogle ScholarPubMed
Marsh, K. 1992. Malaria – a neglected disease? Parasitology 104: S53–69CrossRefGoogle ScholarPubMed
Marsh, K., and Snow, R. W.. 1997. Host-parasite interaction and morbidity in malaria endemic areas. Philosophical Transactions of the Royal Society of London 352: 1385–94CrossRefGoogle ScholarPubMed
May, R. M., and Anderson, R. M.. 1983. Epidemiology and genetics in the coevolution of parasites and host. Proceedings of the Royal Society of London, Series B 219: 281–313CrossRefGoogle Scholar
Mbogo, C. N. M., Kabiru, E. W., Glass, G. E., Forster, D., Snow, R. W., Khamala, C. P. M., Ouma, J. H., Githure, J. I., Marsh, K., and Beier, J. C.. 1999. Vector-related case-control study of severe malaria in Kilifi District, Kenya. American Journal of Tropical Medicine and Hygiene 60: 781–5CrossRefGoogle ScholarPubMed
Messenger, S. L., Molineux, I. J., and Bull, J. J.. 1999. Virulence evolution in a virus obeys a trade-off. Proceedings of the Royal Society of London, Series B 266: 397–404CrossRefGoogle Scholar
Miller, L. H., Baruch, D. I., Marsh, K., and Doumbo, O.. 2002. The pathogenic basis of malaria. Nature 415: 673–9CrossRefGoogle ScholarPubMed
Molineaux, L., Diebner, H. H., Eichner, M., Collins, W. E., Jeffrey, G. M., and Dietz, K.. 2001. Plasmodium falciparum parasitemia described by a new mathematical model. Parasitology 122: 379–91CrossRefGoogle ScholarPubMed
Mortimer, E. A., and M. Wharton. 1999. Diphtheria toxoid. In Vaccines, S. A. Plotkin and W. A. Orenstein, Eds., pp. 140–57. W. B. Saunders, Philadelphia
Ochman, H., and Moran, N.. 2001. Genes lost and genes found: Evolution of bacterial pathogenesis and symbiosis. Science 292: 1096–8CrossRefGoogle ScholarPubMed
Pandey, B., and Igarashi, A.. 2000. Severity-related molecular differences among 19 strains of dengue type 2 viruses. Microbiology and Immunology 44: 179–88CrossRefGoogle Scholar
Pappenheimer, A. M. 1982. Diphtheria: studies on the biology of an infectious disease. Harvey Lectures 76: 45–73Google Scholar
Phillips, R. S. 2001. Current status of malaria and potential for control. Clinical Microbiology Reviews 14: 208–26CrossRefGoogle ScholarPubMed
Plotkin, S. A., and W. A. Orenstein, Eds. 1999. Vaccines. W. B. Saunders, Philadelphia
Preiser, P. R., Jarra, W., Capiod, T., and Snounou, G.. 1999. A rhoptry-protein-associated mechanism of clonal phenotypic variation in rodent malaria. Nature 298: 618–22CrossRefGoogle Scholar
Read, A. F., P. Aaby, R. Antia, D. Ebert, P. W. Ewald, S. Gupta, E. C. Holmes, A. Sasaki, D. C. Shields, F. Taddei, and R. E. Moxon. 1999. What can evolutionary biology contribute to understanding virulence? In Evolution in Health and Disease, S. C. Stearns, Ed., pp. 205–16. Oxford University Press, Oxford
Read, A. F., M. J. Mackinnon, M. A. Anwar, and L. H. Taylor. 2002. Kin selection models as evolutionary explanations of malaria. In Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, U. Dieckmann, J. A. J. Metz, M. W. Sabelis, and K. Sigmund, Eds., pp. 165–78. Cambridge University Press, Cambridge, UK
Read, A. F., and Taylor, L. H.. 2001. The ecology of genetically diverse infections. Science 292: 1099–102CrossRefGoogle ScholarPubMed
Richie, T., and Saul, A.. 2002. Progress and challenges for malaria vaccines. Nature 415: 694–701CrossRefGoogle ScholarPubMed
Robert, F., Ntoumi, F., Angel, G., Candito, D., Rogier, C., Fandeur, T., Sarthou, J.-L., and Mercereau-Puijalon, O.. 1996. Extensive genetic diversity of Plasmodium falciparum isolates collected from patients with severe malaria in Daka, Senegal. Transactions of the Royal Society of Tropical Medicine and Hygiene 90: 704–11CrossRefGoogle Scholar
Rowe, J. A., Moulds, J. M., Newbold, C. I., and Miller, L. H.. 1997. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388: 292–5CrossRefGoogle ScholarPubMed
Sachs, J., and Malaney, P.. 2002. The economic and social burden of malaria. Nature 415: 680–5CrossRefGoogle ScholarPubMed
Schofield, C. J., Hewitt, M. C., Evans, K., Siomos, M.-A., and Seeberger, P. H.. 2002. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418: 785–9CrossRefGoogle Scholar
Sibley, L. D., and Boothroyd, J. C.. 1992. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 359: 82–5CrossRefGoogle ScholarPubMed
Simpson, J. A., Silamut, K., Chotivanich, K., Pukrittayakamee, S., and White, N. J.. 1999. Red cell selectivity in malaria: a study of multiple-infected erythrocytes. Transactions of the Royal Society of Tropical Medicine and Hygiene 93: 165–8CrossRefGoogle ScholarPubMed
Smith, T. 2002. Imperfect vaccines and imperfect models. Trends in Ecology and Evolution 17: 154–156CrossRefGoogle Scholar
Snow, R. W., Craig, M., Deichmann, U., and Marsh, K.. 1999. Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population. Bulletin of the World Health Organization 77: 624–40Google ScholarPubMed
Soubeyrand, B., and Plotkin, S. A.. 2002. Antitoxin vaccines and pathogen virulence. Nature 417: 609–10CrossRefGoogle ScholarPubMed
Taylor, L. H., Mackinnon, M. J., and Read, A. F.. 1998. Virulence of mixed-clone and single-clone infections of the rodent malaria Plasmodium chabaudi. Evolution 52: 583–91CrossRefGoogle ScholarPubMed
Taylor, L. H., and Read, A. F.. 1998. Determinants of transmission success of individual clones from mixed-clone infections of the rodent malaria parasite, Plasmodium chabaudi. International Journal of Parasitology 28: 719–25CrossRefGoogle ScholarPubMed
Taylor, L. H., Walliker, D., and Read, A. F.. 1997. Mixed genotype infections of malaria parasites: within-host dynamics and transmission success of competing clones. Proceedings of the Royal Society of London, Series B 264: 927–35CrossRefGoogle ScholarPubMed
Timms, R. 2001. The Evolution and Ecology of Virulence in Mixed Infections of Malaria Parasites. Ph.D. thesis, University of Edinburgh, Edinburgh
Timms, R., Colegrave, N., Chan, B. H. K., and Read, A. F.. 2001. The effect of parasite dose on disease severity in the rodent malaria Plasmodium chabaudi. Parasitology 123: 1–11CrossRefGoogle ScholarPubMed
Trape, J. F., Pison, G., Spiegel, A., Enel, C., and Rogier, C.. 2002. Combating malaria in Africa. Trends in Parasitology 18: 224–30CrossRefGoogle ScholarPubMed
Weiss, R. A. 2002. Virulence and pathogenesis. Trends in Microbiology 10: 314–17CrossRefGoogle ScholarPubMed
Witter, R. L. 1997a. Avian tumour virsuses: persistent and evolving pathogens. Acta Veterinaria Hungarica 45: 251–66Google Scholar
Witter, R. L. 1997b. Increased virulence of Marek's disease virus field isolates. Avian Diseases 41: 149–63CrossRefGoogle Scholar
Witter, R. L. 1998. The changing landscape of Marek's disease. Avian Pathology 27: S46–53CrossRefGoogle Scholar
Witter, R. L. 2001. Protective efficacy of Marek's disease: Vaccines. Current Topics in Microbiology and Immunology 255: 57–90Google ScholarPubMed
Yoeli, M., Hargreaves, B., Carter, R., and Walliker, D.. 1975. Sudden increase in virulence in a strain of Plasmodium berghei yoelii. Annals of Tropical Medicine and Parasitology 69: 173–8CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×