Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T12:57:24.323Z Has data issue: false hasContentIssue false

7 - Functional roles of theta and gamma oscillations in the association and dissociation of neuronal networks in primates and rodents

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artola, A. and Singer, W. (1993). Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480–487.CrossRefGoogle ScholarPubMed
Artola, A., Brocher, S., and Singer, W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347:69–72.CrossRefGoogle ScholarPubMed
Bannerman, D. M., Good, M. A., Butcher, S. P., Ramsay, M., and Morris, R. G. M. (1995). Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378:182–186.CrossRefGoogle ScholarPubMed
Baylis, G. and Rolls, E. (1987). Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp Brain Res 65:614–622.CrossRefGoogle ScholarPubMed
Bland, B. H. and Oddie, S. D. (2001). Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behav Brain Res 127:119–136.CrossRefGoogle ScholarPubMed
Bliss, T. V. P. and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.CrossRefGoogle ScholarPubMed
Bliss, T. and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetised rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356.CrossRefGoogle Scholar
Braitenberg, V. and Schütz, A. (1983). Some anatomical comments on the hippocampus. In: Neurobiology of the Hippocampus, ed. Seifert, W., pp. 21–37. London: Academic Press.Google Scholar
Bressler, S. L., Coppola, R., and Nakamura, R. (1993). Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366:153–156.CrossRefGoogle ScholarPubMed
Buzsáki, G. (1997). Functions for interneuronal nets in the hippocampus. Can J Physiol Pharmacol 75:508–515.CrossRefGoogle ScholarPubMed
Buzsáki, G. (2006). Rhythms of the Brain. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Buzsáki, G. and Chrobak, J. J. (1995). Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol 5:504–510.CrossRefGoogle ScholarPubMed
Chrobak, J. J. and Buzsáki, G. (1998). Operational dynamics in the hippocampal–entorhinal axis. Neurosci Biobehav Rev 22:303–310.CrossRefGoogle ScholarPubMed
Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., and Buzsáki, G. (1999). Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19:274–287.CrossRefGoogle ScholarPubMed
Czurko, A., Hirase, H., Csicsvari, J., and Buzsáki, G. (1999). Sustained activation of hippocampal pyramidal cells by “space clamping” in a running wheel. Eur J Neurosci 11:344–352.CrossRefGoogle Scholar
Debanne, D. (1996). Associative synaptic plasticity in hippocampus and visual cortex: cellular mechanisms and functional implications. Rev Neurosci 7:29–46.CrossRefGoogle ScholarPubMed
Dusek, J. and Eichenbaum, H. (1997). The hippocampus and memory for orderly stimulus relations. Proc Natl Acad Sci USA 94:7109–7114.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2001). The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127:199–207.CrossRefGoogle ScholarPubMed
Fortin, N. J., Agster, K. L., and Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nat Neurosci 5:458–462.CrossRefGoogle Scholar
Foster, T. C., Castro, C. A., and McNaughton, B. L. (1989). Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. Science 244:1580–1582.CrossRefGoogle ScholarPubMed
Fox, S. E. and Ranck, J. B. J. (1975). Localization and anatomical identification of theta and complex spike cells in dorsal hippocampal formation of rats. Exp Neurol 49:299–313.CrossRefGoogle ScholarPubMed
Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563.CrossRefGoogle ScholarPubMed
Froemke, R. C. and Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438.CrossRefGoogle ScholarPubMed
Froemke, R. C., Tsay, I. A., Raad, M., Long, J. D., and Dan, Y. (2006). Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95:1620–1629.CrossRefGoogle ScholarPubMed
Gochin, P., Miller, E., Gross, C., and Gerstein, G. (1991). Functional interactions among neurons in inferior temporal cortex of the awake macaque. Exp Brain Res 84:505–516.CrossRefGoogle ScholarPubMed
Gray, C. M. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702.CrossRefGoogle ScholarPubMed
Harris, K., Henze, D., Csicsvari, J., Hirase, H., and Buzsáki, G. (2000). Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84:401–414.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley.Google Scholar
Hölscher, C. (1997). Long-term potentiation: a good model for learning and memory?Pro Neuro-Psychopharmacol Biol Psychiat 21:47–68.CrossRefGoogle ScholarPubMed
Hölscher, C. (1999). Synaptic plasticity and learning and memory: LTP and beyond. J Neurosci Res 58:62–75.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Hölscher, C. (2001a). Long-term potentiation as a model for memory mechanisms: the story so far. In: Neural Mechanisms of Memory Formation, ed. Hölscher, C., pp. 1–36. Cambridge, UK: Cambridge University Press.Google Scholar
Hölscher, C. (2001b). Long-term potentiation induced by stimulation on the positive phase of theta rhythm: a better model for learning and memory? In: Neural Mechanisms of Memory Formation, ed. Hölscher, C., pp. 146–166. Cambridge, UK: Cambridge University Press.Google Scholar
Hölscher, C. (2002). Metabotropic glutamate receptors control gating of spike transmission in the hippocampus area CA1. Pharmacol Biochem Behav 73:307–316.CrossRefGoogle ScholarPubMed
Hölscher, C. (2003). Time, space, and hippocampal functions. Rev Neurosci 14:253–284.CrossRefGoogle ScholarPubMed
Hölscher, C. and Rolls, E. T. (2002). Perirhinal cortex neuronal activity is actively related to working memory in the macaque. Neur Plast 9:41–51.CrossRefGoogle ScholarPubMed
Hölscher, C., Anwyl, R., and Rowan, M. (1997a). Block of HFS-induced LTP in the dentate gyrus by 1S,3S-ACPD: further evidence against LTP as a model for learning. Neuroreport 8:451–454.CrossRefGoogle ScholarPubMed
Hölscher, C., Anwyl, R., and Rowan, M. (1997b). Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation which can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17:6470–6477.CrossRefGoogle ScholarPubMed
Hölscher, C., McGlinchey, L., Anwyl, R., and Rowan, M. J. (1997c). HFS-induced long-term potentiation and depotentiation in area CA1 of the hippocampus are not good models for learning. Psychopharmacology 130:174–182.Google Scholar
Hölscher, C., Jacob, W., and Mallot, H. (2003a). Reward modulates neuronal activity in the hippocampus of the rat. Behav Brain Res 142:181–191.CrossRefGoogle ScholarPubMed
Hölscher, C., Rolls, E. T., and Xiang, J. (2003b). Perirhinal cortex neuronal activity related to long-term familiarity memory in the macaque. Eur J Neurosci 18:2037–2046.CrossRefGoogle ScholarPubMed
Jacob, W., Mallot, H., and Hölscher, C. (2002). Broad-range place fields of hippocampal pyramidal cells: hints for motor representation in the hippocampal formation?Proc Society for Neuroscience, vol. 34, abstract 477.471.Google Scholar
Jellema, T. and Perrett, D. I. (2006). Neural representations of perceived bodily actions using a categorical frame of reference. Neuropsychologia 44:1535–1546.CrossRefGoogle ScholarPubMed
Jensen, O. and Lisman, J. (1996). Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn Mem 3:279–287.CrossRefGoogle ScholarPubMed
Jensen, O., Idiart, M. A. P., and Lisman, J. E. (1996). Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: role of fast NMDA channels. Learn Mem 3:243–256.CrossRefGoogle ScholarPubMed
Kamondi, A., Acsady, L., Wang, X. J., and Buzsáki, G. (1998). Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8:244–261.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Kim, J., Clark, R., and Thompson, R. (1995). Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses. Behav Neurosci 109:195–203.CrossRefGoogle Scholar
Kudrimoti, H. S., Barnes, C. A., and McNaughton, B. L. (1999). Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19:4090–4101.CrossRefGoogle ScholarPubMed
Lisman, J., Jensen, O., and Kahana, M. (2001). Towards a physiologic explanation of behavioral data on human memory: the role of theta-gamma oscillations and NMDAR-dependent LTP. In: Neuronal Mechanisms of Memory Formation, ed. Hölscher, C., pp. 195–223. Cambridge, UK: Cambridge University Press.Google Scholar
Louie, K. and Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156.CrossRefGoogle ScholarPubMed
Mehta, M. R., Quirk, M. C., and Wilson, M. A. (2000). Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25:707–715.CrossRefGoogle ScholarPubMed
Morris, R. G. M., Anderson, E., Lynch, G. S., and Baudry, M. (1986). Selective impairment of learning and blockade of LTP by a NMDA receptor antagonist, AP5. Nature 319:774–776.CrossRefGoogle Scholar
Munk, M., Roelfsema, P., König, P., Engel, A., and Singer, W. (1996). Role of reticular activation in the modulation of intracortical synchronization. Science 272:271–274.CrossRefGoogle ScholarPubMed
O'Keefe, J. (1979). A review of the hippocampal place cells. Prog Neurobiol 13:419–439.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330.CrossRefGoogle ScholarPubMed
Olypher, A. V., Klement, D., and Fenton, A. A. (2006). Cognitive disorganization in hippocampus: a physiological model of the disorganization in psychosis. J Neurosci 26:158–168.CrossRefGoogle ScholarPubMed
Paulsen, O. and Sejnowski, T. J. (2000). Natural patterns of activity and long-term synaptic plasticity. Curr Opin Neurobiol 10:172–179.CrossRefGoogle ScholarPubMed
Penttonen, M., Kamondi, A., Acsady, L. and Buzsáki, G. (1998). Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci 10:718–728.CrossRefGoogle ScholarPubMed
Prut, Y., Vaadia, E., Bergman, H., et al. (1998). Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol 79:2857–2874.CrossRefGoogle ScholarPubMed
Redish, A. D., Battaglia, F. P., Chawla, M. K., et al. (2001). Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J Neurosci 21:RC134.CrossRefGoogle ScholarPubMed
Rolls, E. (2001). Neuronal networks, synaptic plasticity, and memory systems in primates. In: Neuronal Mechanisms of Memory Formation, ed. Hölscher, C., pp. 224–262. Cambridge, UK: Cambridge University Press.Google Scholar
Saucier, D., Hargreaves, E. L., Boon, F., Vanderwolf, C. H., and Cain, D. P. (1996). Detailed behavioral analysis of water maze acquisition under systemic NMDA or muscarinic antagonism: nonspatial pretraining eliminates spatial learning deficits. Behav Neurosci 110:103–116.CrossRefGoogle ScholarPubMed
Singer, W. (1994). Time as coding space in neocortical processing: a hypothesis. In: Temporal Coding in the Brain, ed. Buzsáki, G., pp. 51–79. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Singer, W. (1999). Time as coding space?Curr Opin Neurobiol 9:189–194.CrossRefGoogle ScholarPubMed
Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Stanton, P. K. (1996). LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus 6:35–42.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Stanton, P. K. and Sejnowski, T. J. (1989). Associative long-term depression in the hippocampus induced by Hebbian covariance. Nature 339:215–218.CrossRefGoogle ScholarPubMed
Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., and McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus 6:271–280.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Uhlhaas, P. J. and Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168.CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (2000). What is the significance of gamma wave activity in the pyriform cortex? Brain Res 877:125–133.CrossRefGoogle ScholarPubMed
Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239.CrossRefGoogle ScholarPubMed
Xu, N., Ye, C., Poo, M., and Zhang, X. (2006). Coincidence detection of synaptic inputs is facilitated at the distal dendrites after long-term potentiation induction. J Neurosci 26:3002–3009.CrossRefGoogle ScholarPubMed
Zola-Morgan, S., Squire, L. R., and Amaral, D. G. (1986). Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to CA1. J Neurosci 6:2950–2967.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×