Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-12T15:56:14.203Z Has data issue: false hasContentIssue false

13 - Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies

from Part II - Chemical Communication

Published online by Cambridge University Press:  18 May 2010

Gary J. Blomquist
Affiliation:
University of Nevada, Reno
Anne-Geneviève Bagnères
Affiliation:
CNRS - Université de Tours
Get access

Summary

The social organization of insect colonies indicates the importance of information that is usually not needed in solitary insects. Information about the presence and fertility of a queen strongly affects worker behavior and colony organization. Reproductive competition in colonies requires the correct assessment of each others' rank. All of this information about fertility status and/or dominance status can be encoded in the cuticular hydrocarbon profile of members of ant, wasp, and bee colonies. Understanding variations in these hydrocarbon profiles, their composition, and relation to fertility is key to the further understanding of the major property of eusocial insects, reproductive division of labor.

Cuticular hydrocarbons are part of the lipid layer of the insect cuticle that protects from desiccation (Lockey, 1988) and are thus present in basically every social insect (see Chapter 6). Insects have the sensory apparatus to detect these profiles. So it is not surprising that they utilize variations in hydrocarbon profiles between individuals within and between species to detect various properties in other individuals, such as species identity, gender, colony membership (Howard and Blomquist, 1982, 2005; and various chapters in Part II of this book). In this chapter I will review the evidence indicating that hydrocarbon profiles are also used in colonies of ants, bees, and wasps for the regulation of reproduction. I will especially focus on patterns of variation in hydrocarbon profiles on the cuticle and the eggs in relation to fertility differences, which has not been done in such detail in previous reviews (Heinze, 2004; Monnin, 2006; Hefetz, 2007; Le Conte and Hefetz, 2008; Peeters and Liebig, 2009).

Type
Chapter
Information
Insect Hydrocarbons
Biology, Biochemistry, and Chemical Ecology
, pp. 254 - 281
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×